pybind.cc 19.6 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
Qiao Longfei 已提交
17
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
18
#include "paddle/framework/executor.h"
Q
qijun 已提交
19
#include "paddle/framework/feed_fetch_method.h"
20
#include "paddle/framework/framework.pb.h"
D
dangqingqing 已提交
21
#include "paddle/framework/lod_tensor.h"
22
#include "paddle/framework/prune.h"
Q
qijun 已提交
23
#include "paddle/framework/selected_rows.h"
24
#include "paddle/framework/tensor_array.h"
Z
zchen0211 已提交
25
#include "paddle/operators/cond_op.h"
26
#include "paddle/operators/dynamic_recurrent_op.h"
Y
Yan Chunwei 已提交
27
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
28
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
29
#include "paddle/platform/enforce.h"
Q
qijun 已提交
30
#include "paddle/platform/place.h"
Y
Yu Yang 已提交
31
#include "paddle/pybind/exception.h"
Q
qijun 已提交
32
#include "paddle/pybind/pybind.h"
33
#include "paddle/pybind/tensor_py.h"
34
#include "paddle/string/to_string.h"
35

D
Dong Zhihong 已提交
36 37
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
Dong Zhihong 已提交
38
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
39 40
#endif

41
namespace paddle {
42
namespace pybind {
43 44 45 46 47
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
48
bool IsCompileGPU() {
49
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
50 51 52 53 54 55
  return false;
#else
  return true;
#endif
}

56
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
57
  py::module m("core", "C++ core of PaddlePaddle");
58

59 60 61 62
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
63 64
  BindException(m);

65 66 67
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
68
      .def("get_dims",
69
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
70
      .def("set_dims",
Q
qijun 已提交
71
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
72
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
73 74
           })
      .def("alloc_float",
Y
Yu Yang 已提交
75
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
76
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
77
           })
Q
qijun 已提交
78
      .def("alloc_float",
Y
Yu Yang 已提交
79
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
80
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
81 82
           })
      .def("alloc_int",
Y
Yu Yang 已提交
83
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
84
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
85
           })
Q
qijun 已提交
86
      .def("alloc_int",
Y
Yu Yang 已提交
87
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
88
             self.mutable_data<int>(place);
Q
qijun 已提交
89
           })
Y
Yu Yang 已提交
90 91
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
92
      .def("set", PyCPUTensorSetFromArray<double>)
93
      .def("set", PyCPUTensorSetFromArray<int64_t>)
94
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
95 96
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
97
      .def("set", PyCUDATensorSetFromArray<double>)
98
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Q
qijun 已提交
99
#endif
100
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
101 102 103 104 105
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
106

107
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
108 109
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
110 111 112
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
113
#ifndef PADDLE_WITH_CUDA
114
            new (&instance) LoDTensor(lod);
115
#else
Y
Yu Yang 已提交
116
             LoD new_lod;
117 118
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
119
             new (&instance) LoDTensor(new_lod);
120
#endif
121
          })
Y
Yu Yang 已提交
122
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
123
      .def("set_lod",
124
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
125
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
126
             self.set_lod(lod);
127
#else
Y
Yu Yang 已提交
128
             LoD new_lod;
129 130 131 132
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
133
           })
134
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
135
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
136
        return self.lod();
137 138 139 140 141
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
142
               [](Vector<size_t> item) ->
143 144 145 146 147 148 149 150
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
151 152
      });

Q
qijun 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
166 167 168 169 170 171 172 173 174
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
175 176 177 178 179 180 181 182 183 184 185
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
186

187
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
188 189 190

All parameter, weight, gradient are variables in Paddle.
)DOC")
191
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
192
      .def("set_int",
193 194
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
195 196 197 198 199 200 201
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
202
      .def("get_tensor",
203 204
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
205 206
           },
           py::return_value_policy::reference)
Q
qijun 已提交
207 208 209 210 211
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
212 213 214 215 216 217 218
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
219
      .def("get_net",
D
dongzhihong 已提交
220 221
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
222
           },
Y
Yu Yang 已提交
223
           py::return_value_policy::reference);
224

225
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
226
      .def("var",
227
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
228
             return self.Var(name);
Y
Yu Yang 已提交
229
           },
230
           py::return_value_policy::reference)
231
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
232
      .def(py::init<>())
233
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
234
           py::return_value_policy::reference)
Y
Yu Yang 已提交
235
      .def("drop_kids", &Scope::DropKids);
236

Y
Yu Yang 已提交
237 238
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
239 240
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
241 242 243 244 245 246 247 248 249 250
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
251 252
    return ret_values;
  });
253 254 255 256 257 258 259 260 261 262
  m.def("prune", [](const ProgramDescBind &origin,
                    const std::vector<std::array<size_t, 2>> &targets) {
    ProgramDescBind prog_with_targets(origin);
    for (const auto &t : targets) {
      prog_with_targets.Block(t[0])->Op(t[1])->MarkAsTarget();
    }
    ProgramDesc pruned_desc;
    Prune(*prog_with_targets.Proto(), &pruned_desc);
    return new ProgramDescBind(pruned_desc);
  });
263 264 265
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
266 267
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
268
  // clang-format off
Y
Yu Yang 已提交
269
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
270 271
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
272
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
273 274 275 276 277
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
278
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
279
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
280
#else
Q
qijun 已提交
281
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
282
#endif
Q
qijun 已提交
283
                  });
D
Dong Zhihong 已提交
284
// clang-format on
Q
qijun 已提交
285

D
Dong Zhihong 已提交
286 287 288
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
289 290 291
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
292

293 294 295
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
296

Y
Yu Yang 已提交
297 298 299 300 301 302 303 304 305 306 307
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
           [](platform::Place &self, const platform::GPUPlace &gpu_place) {
             self = gpu_place;
           });

Y
Yu Yang 已提交
308 309 310 311 312 313 314 315 316
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
317
                    return OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
318 319 320 321 322 323
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
324
      .def("run",
325
           [](OperatorBase &self, const Scope &scope,
326 327 328 329
              const platform::DeviceContext &dev_ctx) {
             self.Run(scope, dev_ctx);
             dev_ctx.Wait();
           })
Y
Yu Yang 已提交
330 331 332 333 334 335 336
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
337 338
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
339
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
340
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
341 342 343 344
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
345

Y
Yu Yang 已提交
346 347 348 349 350 351 352
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
353 354
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
355 356 357 358
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
359

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
  py::class_<framework::TensorArray>(m, "TensorArray")
      .def("__init__",
           [](TensorArray &instance) { new (&instance) TensorArray(); })
      .def("read",
           [](TensorArray &self, size_t index) { return self.Read(index); })
      .def("write", [](TensorArray &self, size_t index,
                       LoDTensor &value) { self.Write(index, value); })
      .def("write_shared",
           [](TensorArray &self, size_t index, const LoDTensor &value) {
             self.WriteShared(index, value);
           })
      .def("size", [](TensorArray &self) { return self.size(); })
      .def("pack",
           [](TensorArray &self, size_t level,
              const std::vector<std::vector<size_t>> &meta_info,
              const std::vector<std::vector<size_t>> &lod) {
             std::vector<DySeqMeta> meta;
             for (auto &info : meta_info) {
               PADDLE_ENFORCE_EQ(info.size(), 3UL);
               meta.emplace_back(info[0], info[1], info[2]);
             }
#ifndef PADDLE_WITH_CUDA
             return self.Pack(level, meta, lod);
#else
             LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return self.Pack(level, meta, new_lod);
#endif
           })
      .def("unpack",
           [](TensorArray &self, const LoDTensor &source, int level,
              bool length_descend) {
             auto metas = self.Unpack(source, level, length_descend);
             std::vector<std::vector<size_t>> meta_info;
             for (auto meta : metas) {
               meta_info.emplace_back(
                   std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
             }
             return meta_info;
           })
      .def("stack", [](TensorArray &self) { return self.Stack(); })
      .def("unstack",
           [](TensorArray &self, const LoDTensor &source) {
             return self.Unstack(source);
           })
      .def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
        return self.UnstackShared(source);
      });

Y
Yan Chunwei 已提交
410
  // recurrent_op
Y
Yu Yang 已提交
411 412 413 414 415 416 417 418 419 420
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
421
            auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
Y
Yu Yang 已提交
422 423
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
424 425 426 427
      .def("set_stepnet", [](operators::RecurrentOp &self,
                             const operators::NetOp &net) -> void {
        self.set_stepnet(net.Clone());
      });
Y
Yan Chunwei 已提交
428

429 430 431 432 433 434 435 436 437 438
  py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
                                                          "DynamicRecurrentOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::DynamicRecurrentOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
439
                    auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
440 441 442
                    return static_cast<operators::DynamicRecurrentOp *>(
                        rnn_op.release());
                  })
443
      .def("set_step_unit",
444
           [](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
445
               -> void { self.rnn.SetStepUnit(net.Clone()); })
446 447
      .def("get_state",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
448
               -> const TensorArray & { return self.rnn.state(name); })
449 450
      .def("get_step_input",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
451
               -> const TensorArray & { return self.rnn.step_input(name); })
452 453
      .def("get_step_output",
           [](operators::DynamicRecurrentOp &self, const std::string &name)
454
               -> const TensorArray & { return self.rnn.step_output(name); });
455

Z
cond op  
zchen0211 已提交
456 457 458 459 460 461 462 463 464 465
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
466
                    auto cond_op = OpRegistry::CreateOp(desc, nullptr);
Z
cond op  
zchen0211 已提交
467 468 469 470 471 472 473 474 475 476 477
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
478 479
  py::class_<framework::Executor>(m, "Executor")
      .def(py::init<std::vector<platform::Place> &>())
Y
Yu Yang 已提交
480 481 482 483
      .def("run", [](Executor &self, ProgramDescBind *program_bind,
                     Scope *scope, int block_id) {
        self.Run(*program_bind->Proto(), scope, block_id);
      });
F
fengjiayi 已提交
484

485 486
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
487
  m.def("is_compile_gpu", IsCompileGPU);
488
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
489
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
490

F
fengjiayi 已提交
491 492 493 494
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Y
Yu Yang 已提交
495

Y
Yu Yang 已提交
496
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
497
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
498
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
Dong Zhihong 已提交
499
#endif
Y
Yu Yang 已提交
500

501
  return m.ptr();
L
Luo Tao 已提交
502
}
503
}  // namespace pybind
504
}  // namespace paddle