model.py 88.4 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import inspect
import os
import pickle
import numpy as np
import six
import warnings
25 26 27
import time
import socket
import contextlib
28

29
import paddle
30
from paddle import fluid
31
from paddle.fluid import core
32 33 34
from paddle.fluid.framework import in_dygraph_mode
from paddle.fluid.framework import Variable
from paddle.fluid.framework import _get_paddle_place
35
from paddle.fluid.framework import _current_expected_place as _get_device
36 37 38 39
from paddle.fluid.executor import global_scope
from paddle.fluid.io import is_belong_to_optimizer
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
40 41
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX
from paddle.fluid.dygraph.io import INFER_PARAMS_SUFFIX
42
from paddle.fluid.layers.utils import flatten
43
from paddle.fluid.layers import collective
44

45 46 47
from paddle.io import DataLoader
from paddle.io import Dataset
from paddle.io import DistributedBatchSampler
48
from paddle.metric import Metric
49
from paddle.static import InputSpec as Input
50
import paddle.distributed as dist
J
Jiaqi Liu 已提交
51 52
import paddle.distributed.fleet as fleet
from paddle.distributed.fleet.base import role_maker
53

L
LiuChiachi 已提交
54
from .callbacks import config_callbacks, EarlyStopping
L
LielinJiang 已提交
55
from .model_summary import summary
56

57
__all__ = []
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

_parallel_context_initialized = False


def to_list(value):
    if value is None:
        return value
    if isinstance(value, (list, tuple)):
        return list(value)
    return [value]


def to_numpy(var):
    assert isinstance(var, (Variable, fluid.core.VarBase)), "not a variable"
    if isinstance(var, fluid.core.VarBase):
        return var.numpy()
    t = global_scope().find_var(var.name).get_tensor()
    return np.array(t)


def flatten_list(l):
    assert isinstance(l, list), "not a list"
    outl = []
    splits = []
    for sl in l:
        assert isinstance(sl, list), "sub content not a list"
        splits.append(len(sl))
        outl += sl
    return outl, splits


def restore_flatten_list(l, splits):
    outl = []
    for split in splits:
        assert len(l) >= split, "list length invalid"
        sl, l = l[:split], l[split:]
        outl.append(sl)
    return outl


def extract_args(func):
    if hasattr(inspect, 'getfullargspec'):
        return inspect.getfullargspec(func)[0]
    else:
        return inspect.getargspec(func)[0]


def _all_gather(x, nranks, ring_id=0, use_calc_stream=True):
    return collective._c_allgather(
        x, nranks, ring_id=ring_id, use_calc_stream=use_calc_stream)


def wait_server_ready(endpoints):
    assert not isinstance(endpoints, six.string_types)
    while True:
        all_ok = True
        not_ready_endpoints = []
        for ep in endpoints:
            ip_port = ep.split(":")
            with contextlib.closing(
                    socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
                sock.settimeout(2)
                result = sock.connect_ex((ip_port[0], int(ip_port[1])))
                if result != 0:
                    all_ok = False
                    not_ready_endpoints.append(ep)
        if not all_ok:
            time.sleep(3)
        else:
            break


def init_communicator(program, rank, nranks, wait_port, current_endpoint,
                      endpoints):
    if nranks < 2:
        return
    other_endpoints = endpoints[:]
    other_endpoints.remove(current_endpoint)
136
    block = program.global_block()
137 138
    if rank == 0 and wait_port:
        wait_server_ready(other_endpoints)
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    if core.is_compiled_with_cuda():
        nccl_id_var = block.create_var(
            name=fluid.unique_name.generate('nccl_id'),
            persistable=True,
            type=fluid.core.VarDesc.VarType.RAW)

        block.append_op(
            type='c_gen_nccl_id',
            inputs={},
            outputs={'Out': nccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints
            })

        block.append_op(
            type='c_comm_init',
            inputs={'X': nccl_id_var},
            outputs={},
            attrs={
                'nranks': nranks,
                'rank': rank,
                'ring_id': 0,
            })
    elif core.is_compiled_with_npu():
        hccl_id_var = block.create_var(
Z
zhangchunle 已提交
166
            name=fluid.unique_name.generate('hccl_id'),
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        block.append_op(
            type='c_gen_hccl_id',
            inputs={},
            outputs={'Out': hccl_id_var},
            attrs={
                'rank': rank,
                'endpoint': current_endpoint,
                'other_endpoints': other_endpoints
            })
        block.append_op(
            type='c_comm_init_hccl',
            inputs={'X': hccl_id_var},
            outputs={},
            attrs={
                'rank': rank,
                'ring_id': 0,
                'device_id': int(os.getenv("FLAGS_selected_npus")),
                'rank_ids': nranks
            })
188 189 190 191 192 193 194


def prepare_distributed_context(place=None):
    if place is None:
        place = fluid.CUDAPlace(ParallelEnv().dev_id) if ParallelEnv().nranks > 1 \
            else fluid.CUDAPlace(0)

195
    place = _get_paddle_place(place)
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    strategy = fluid.dygraph.parallel.ParallelStrategy()
    strategy.nranks = ParallelEnv().nranks
    strategy.local_rank = ParallelEnv().local_rank
    strategy.trainer_endpoints = ParallelEnv().trainer_endpoints
    strategy.current_endpoint = ParallelEnv().current_endpoint

    if strategy.nranks < 2:
        return

    global _parallel_context_initialized

    if not _parallel_context_initialized and isinstance(place, fluid.CUDAPlace):

        def _init_context():
            communicator_prog = fluid.Program()
            init_communicator(communicator_prog, strategy.local_rank,
                              strategy.nranks, True, strategy.current_endpoint,
                              strategy.trainer_endpoints)
            exe = fluid.Executor(place)
            exe.run(communicator_prog)

        if fluid.in_dygraph_mode():
            fluid.disable_dygraph()
            _init_context()
            fluid.enable_dygraph(place)

    else:
        assert ("Only support CUDAPlace for now.")

    _parallel_context_initialized = True
    return strategy
227 228


L
LiuChiachi 已提交
229
def _update_input_info(inputs):
L
LiuChiachi 已提交
230
    "Get input shape list by given inputs in Model initialization."
231
    shapes = None
L
LiuChiachi 已提交
232
    dtypes = None
L
LiuChiachi 已提交
233 234
    if isinstance(inputs, Input):
        shapes = [list(inputs.shape)]
L
LiuChiachi 已提交
235
        dtypes = [inputs.dtype]
236
    elif isinstance(inputs, (list, tuple)):
237
        shapes = [list(input.shape) for input in inputs]
L
LiuChiachi 已提交
238
        dtypes = [input.dtype for input in inputs]
239 240
    elif isinstance(inputs, dict):
        shapes = [list(inputs[name].shape) for name in inputs]
L
LiuChiachi 已提交
241 242 243 244
        dtypes = [inputs[name].dtype for name in inputs]
    else:
        return None
    return shapes, dtypes
245 246


247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
class StaticGraphAdapter(object):
    """
    Model traning/inference with a static graph.
    """

    def __init__(self, model):
        super(StaticGraphAdapter, self).__init__()
        self.model = model
        # with `_build_once` gone, parameters are now created in `__init__`
        # so we need to keep track of the parameters already created
        self._startup_prog = fluid.default_startup_program()
        self._orig_prog = fluid.default_main_program()

        self._label_vars = {}  # label variables
        self._input_vars = {}  # label variables
        self._endpoints = {}
        self._loss_endpoint = None
        self._executor = None
        self._progs = {}
        self._compiled_progs = {}

        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank

J
Jiaqi Liu 已提交
278 279 280
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
L
Leo Chen 已提交
281
        self._use_fp16_guard = None
J
Jiaqi Liu 已提交
282

283 284 285 286 287 288 289 290
    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

L
lyuwenyu 已提交
291
    def train_batch(self, inputs, labels=None, update=True):
292 293 294
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
        self.mode = 'train'
L
update  
lyuwenyu 已提交
295
        assert update is True, "Does not support `update == False` in static mode by now."
296 297 298 299 300 301
        return self._run(inputs, labels)

    def eval_batch(self, inputs, labels=None):
        self.mode = 'eval'
        return self._run(inputs, labels)

302
    def predict_batch(self, inputs):
303 304 305 306
        self.mode = 'test'
        return self._run(inputs, None)

    def parameters(self, *args, **kwargs):
307
        return self.model.network.parameters(*args, **kwargs)
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

    def save(self, path):
        def _save(state, path):
            if not state:
                return
            state = {
                k: to_numpy(v) if isinstance(v, Variable) else v
                for k, v in state.items()
            }
            with open(path, 'wb') as f:
                pickle.dump(state, f)

        base = os.path.basename(path)
        assert base != "", "path should be of 'dirname/filename' format"
        dir_name = os.path.dirname(path)
        if dir_name and not os.path.exists(dir_name):
            os.makedirs(dir_name)
        param_path = path + ".pdparams"
326
        _save(self.model.network.state_dict(), param_path)
327 328 329 330 331 332 333 334 335 336 337 338 339 340
        prog = self._progs.get('train', None)
        if prog is None or self.model._optimizer is None:
            return
        # XXX `optimizer.state_dict()` only work in dygraph mode
        optim_path = path + ".pdopt"
        optim = {
            p.name: p
            for p in filter(is_belong_to_optimizer, prog.list_vars())
        }
        if not optim:
            return

        _save(optim, optim_path)

L
Leo Chen 已提交
341
    # TODO: support save/load scaler state in static graph
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    def load(self, param_state_pairs, optim_state):
        if self._executor is None:
            executor = fluid.Executor(fluid.CPUPlace())._default_executor
        else:
            executor = self._executor._default_executor

        # restore parameter states
        fluid.core._create_loaded_parameter(
            [param for param, state in param_state_pairs],
            global_scope(), executor)
        for param, state in param_state_pairs:
            self._set_var(param, state)

        # restore optimizer states
        # FIXME what if a different optimizer is used?
        if not self.model._optimizer or not optim_state:
            return
        self._load_optimizer(optim_state, executor)

    def _load_optimizer(self, state, executor):
        prog = self._progs.get('train', None)
        optim = list(filter(is_belong_to_optimizer, prog.list_vars()))
        if not optim:
            return

        fluid.core._create_loaded_parameter(optim, global_scope(), executor)

        converted_state = dict(state)
        for var in optim:
            if var.name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # When using learning rate scheduler, dygraph would name the
                # global step var as "global_step" to save, while static-graph
                # would has a state var named as "@LR_DECAY_COUNTER@".
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                state_val = (
                    np.array(converted_state.pop("global_step")) - 1
                ) if "global_step" in converted_state else converted_state.pop(
                    "@LR_DECAY_COUNTER@", None)
                if state_val is not None:
                    converted_state[var.name] = state_val
            elif var.name.startswith("learning_rate_"):
                # When using static learning rate, static-graph would make it
                # a persistable var named 'unique_name.generate("learning_rate")',
                # However, dygraph wouldn't save it.
                if var.name not in state:
                    continue
            else:
                # moment and other accumulators
                if var.name not in converted_state:
                    # try to convert from dygraph name
                    opt_name = self.model._optimizer._name
                    opt_cls_name = self.model._optimizer.__class__.__name__
                    opt_unq_name = None
                    for name in self.model._optimizer._accumulators.keys():
                        accum_name = name if opt_name is None else name[len(
                            opt_name) + 1:]
                        for param_name, state_var in self.model._optimizer._accumulators[
                                name].items():
                            if opt_unq_name is None:
                                # can not infer out the exact unique(opt_name),
                                # thus try to extract rather than generate
                                for state_key in sorted(
                                        state.keys(),
                                        key=lambda x: len(x),
                                        reverse=True):
                                    prefix = param_name + "_" + (
                                        opt_cls_name
                                        if opt_name is None else opt_name) + "_"
                                    if state_key.startswith(prefix):
                                        prefix_offset = state_key[len(
                                            prefix):].find("_") + len(prefix)
                                        opt_unq_name = state_key[len(
                                            param_name + "_"):prefix_offset]
                                        # TODO: assert
                                        # assert opt_unq_name is None
                                    # gen(param.name + "_" + gen(opt_name) + "_" + accum_name)
                                    # always end with "_0" since the unique optimizer._name
                            dy_state_name = (param_name + "_" + opt_unq_name +
                                             "_" + accum_name + "_0")
                            converted_state[
                                state_var.name] = converted_state.pop(
                                    dy_state_name)

            assert var.name in converted_state, \
                "variable [{}] is not in optimizer state file".format(var.name)
            self._set_var(var, converted_state[var.name])

    def _set_var(self, var, ndarray):
        t = global_scope().find_var(var.name).get_tensor()
        p = t._place()
        if p.is_cpu_place():
            place = fluid.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = fluid.CUDAPinnedPlace()
        else:
            p = fluid.core.Place()
            p.set_place(t._place())
            place = fluid.CUDAPlace(p.gpu_device_id())

        t.set(ndarray, place)

    def _run(self, inputs, labels=None):
        compiled_prog = self._compiled_progs.get(self.mode, None)
        assert compiled_prog, \
            "Model is not ready, please call `model.prepare()` first"

        inputs = to_list(inputs)
        if labels is not None:
            labels = to_list(labels)
        assert len(inputs) == len(self._input_vars[self.mode]), \
            "number of inputs" \
            + " does not match number of arguments of `forward` method"

        feed = {}
        input_names = [v.name for v in self._input_vars[self.mode]]
L
Leo Chen 已提交
459 460
        input_dtypes = [v.dtype for v in self._input_vars[self.mode]]

461 462 463 464
        for idx, n in enumerate(input_names):
            # train and test may take different arguments
            if inputs[idx] is not None:
                feed[n] = inputs[idx]
L
Leo Chen 已提交
465 466 467 468 469 470 471
            if self._amp_level == 'O2' and input_dtypes[
                    idx] == core.VarDesc.VarType.FP16:
                if isinstance(feed[n], core.LoDTensor):
                    feed[n] = feed[n]._as_type(core.VarDesc.VarType.FP16)
                elif isinstance(feed[n], numpy.array):
                    feed[n] = feed[n].astype('float16')

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
        if labels is not None:
            for idx, v in enumerate(self._label_vars[self.mode]):
                feed[v.name] = labels[idx]

        endpoints = self._endpoints[self.mode]
        if self.mode == 'test':
            fetch_list = endpoints['output']
        else:
            metric_list, metric_splits = flatten_list(endpoints['metric'])
            fetch_list = endpoints['loss'] + metric_list
            num_loss = len(endpoints['loss'])

        # if fetch Variable is same as input Variable, do not fetch
        # from program, get it from input directly
        pruned_fetch_list = []
        pruned_fetch_idx_name_map = [""] * len(fetch_list)
        for i, fetch_var in enumerate(fetch_list):
            if fetch_var.name in feed.keys():
                pruned_fetch_idx_name_map[i] = fetch_var.name
            else:
                pruned_fetch_list.append(fetch_var)

        rets = self._executor.run(compiled_prog,
                                  feed=feed,
                                  fetch_list=pruned_fetch_list,
                                  return_numpy=False)

        # restore pruned fetch_list Variable from feeds
        for i, name in enumerate(pruned_fetch_idx_name_map):
            if len(name) > 0:
                rets.insert(i, feed[name])

        # LoDTensor cannot be fetch as numpy directly
        rets = [np.array(v) for v in rets]
        if self.mode == 'test':
            return rets[:]
508

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        metric_states = restore_flatten_list(rets[num_loss:], metric_splits)
        metrics = []
        for metric, state in zip(self.model._metrics, metric_states):
            # cut off padding size
            if self.mode != 'train' and self.model._test_dataloader is not None \
                    and isinstance(self.model._test_dataloader, DataLoader) \
                    and self._nranks > 1:
                total_size = len(self.model._test_dataloader.dataset)
                # TODO: fixme if have better way to get batch size
                samples = state[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    state = [
                        s[:int(total_size - current_count), ...] for s in state
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

            metrics.append(metric.update(*state))
532 533 534 535 536

        if num_loss and len(metrics):
            return rets[:num_loss], metrics
        else:
            return rets[:num_loss] if num_loss else metrics
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567

    def prepare(self):
        modes = ['train', 'eval', 'test']
        for mode in modes:
            self._make_program(mode)
            self._compile_and_initialize(self._progs[mode], mode)

    def _make_program(self, mode):
        prog = self._progs.get(mode, None)
        if prog is not None:
            return

        prog = self._orig_prog.clone()
        # NOTE: When defining learning rate scheduling in static-graph, ops to
        # increase the global step var and calculate learning rate would be
        # prepended into _orig_prog. test program maked by `_orig_prog.clone`
        # also would include these ops. Thus must prune these ops in test
        # program, otherwise the global step would be changed in test.
        if mode != 'train':
            for op in list(prog.global_block().ops):
                prog.global_block()._remove_op(0)
        if mode == 'train' and self.model._optimizer \
                and self.model._optimizer._learning_rate_map:
            # HACK workaround learning rate map issue
            lr_var = self.model._optimizer._learning_rate_map[self._orig_prog]
            new_lr_var = prog.global_block().vars[lr_var.name]
            self.model._optimizer._learning_rate_map[prog] = new_lr_var

        losses = []
        metrics = []
        with fluid.program_guard(prog, self._startup_prog):
568 569
            inputs = self.model._inputs
            labels = self.model._labels if self.model._labels else []
570 571
            inputs = [k._create_feed_layer() for k in to_list(inputs)]
            labels = [k._create_feed_layer() for k in to_list(labels)]
572
            self._label_vars[mode] = labels
573
            outputs = to_list(self.model.network.forward(*inputs))
574

575 576
            if mode != 'test' and self.model._loss:
                losses = self.model._loss(*(outputs + labels))
577 578 579 580 581 582 583 584

            if self._nranks > 1 and mode != 'train':
                outputs = [_all_gather(o, self._nranks) for o in outputs]
                if mode != 'test':
                    labels = [_all_gather(l, self._nranks) for l in labels]

            if mode != 'test':
                for metric in self.model._metrics:
585
                    metrics.append(to_list(metric.compute(*(outputs + labels))))
586 587 588 589 590 591

            if mode == 'train' and self.model._optimizer:
                self._loss_endpoint = fluid.layers.sum(losses)
                if self._nranks > 1:
                    role = role_maker.PaddleCloudRoleMaker(is_collective=True)
                    fleet.init(role)
J
Jiaqi Liu 已提交
592 593 594 595 596 597 598
                    dist_strategy = fleet.DistributedStrategy()
                    if self._amp_level != 'O0':
                        dist_strategy.amp = True
                        dist_strategy.amp_configs = self._amp_configs.copy()
                        dist_strategy.amp_configs.update(self._amp_custom_lists)
                        dist_strategy.amp_configs[
                            'use_pure_fp16'] = self._amp_level == 'O2'
599 600
                    self.model._optimizer = fleet.distributed_optimizer(
                        self.model._optimizer, strategy=dist_strategy)
J
Jiaqi Liu 已提交
601 602 603 604 605 606 607 608 609 610
                elif self._amp_level != "O0" and core.is_compiled_with_cuda:
                    amp_lists = paddle.static.amp.AutoMixedPrecisionLists(
                        **self.
                        _amp_custom_lists) if self._amp_custom_lists else None
                    self.model._optimizer = paddle.static.amp.decorate(
                        self.model._optimizer,
                        amp_lists=amp_lists,
                        use_pure_fp16=self._amp_level == "O2",
                        use_fp16_guard=self._use_fp16_guard,
                        **self._amp_configs)
611 612 613 614 615 616 617 618 619 620 621

                self.model._optimizer.minimize(self._loss_endpoint)

        if mode != 'train':  # clone again to put it in test mode
            prog = prog.clone(for_test=True)

        self._input_vars[mode] = inputs

        self._progs[mode] = prog
        self._endpoints[mode] = {
            "output": outputs,
622
            "loss": to_list(losses),
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
            "metric": metrics
        }

    def _compile_and_initialize(self, prog, mode):
        compiled_prog = self._compiled_progs.get(mode, None)
        if compiled_prog is not None:
            return compiled_prog

        assert self.model._place is not None, \
            "device is not set, please call `model.prepare()` first"

        place = self.model._place

        # XXX *ALL WEIGHTS* should be initialized upon model construction
        # even if `forward()` may run different code path for different mode
        # therefore startup program only needs to run once
        if self._executor is None:
            self._executor = fluid.Executor(place)
            # XXX incremental initialization
            uninitialized = []
            for var_py in self._startup_prog.list_vars():
                var = fluid.global_scope().find_var(var_py.name)
                if not var_py.name.startswith('nccl_id') and var and \
                        var.get_tensor()._is_initialized():
                    continue

                uninitialized.append(var_py)
            if uninitialized:
                startup_prog = self._startup_prog._prune(uninitialized)
                self._executor.run(startup_prog)

J
Jiaqi Liu 已提交
654 655 656 657
        if self._amp_level == "O2" and mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model._optimizer.amp_init(place)

658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
        if self._nranks < 2:
            compiled_prog = fluid.CompiledProgram(prog)
        else:
            compiled_prog = prog

        self._compiled_progs[mode] = compiled_prog


class DynamicGraphAdapter(object):
    def __init__(self, model):
        super(DynamicGraphAdapter, self).__init__()
        self.model = model
        self._nranks = ParallelEnv().nranks
        self._local_rank = ParallelEnv().local_rank
        self._merge_count = {
            'eval_total': 0,
            'test_total': 0,
            'eval_batch': 0,
            'test_batch': 0
        }

L
LiuChiachi 已提交
679
        self._input_info = None
J
Jiaqi Liu 已提交
680 681 682 683 684
        self._amp_level = "O0"
        self._amp_configs = {}
        self._amp_custom_lists = {}
        self._use_fp16_guard = True

685
        if self._nranks > 1:
686
            dist.init_parallel_env()
687 688 689 690 691
            stradegy = fluid.dygraph.parallel.ParallelStrategy()
            stradegy.nranks = ParallelEnv().nranks
            stradegy.local_rank = ParallelEnv().local_rank
            stradegy.trainer_endpoints = ParallelEnv().trainer_endpoints
            stradegy.current_endpoint = ParallelEnv().current_endpoint
692 693
            self.ddp_model = fluid.dygraph.parallel.DataParallel(
                self.model.network, stradegy)
694 695 696 697 698 699 700 701 702 703

    @property
    def mode(self):
        return self.model.mode

    @mode.setter
    def mode(self, value):
        self.model.mode = value

    # TODO multi device in dygraph mode not implemented at present time
L
lyuwenyu 已提交
704
    def train_batch(self, inputs, labels=None, update=True):
705 706
        assert self.model._optimizer, \
            "model not ready, please call `model.prepare()` first"
707
        self.model.network.train()
708 709
        self.mode = 'train'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
710
        self._input_info = _update_input_info(inputs)
711 712 713
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

L
Leo Chen 已提交
714 715 716 717
        # scaler should be initialized only once
        if self._amp_level != "O0" and self.model._scaler is None:
            self.model._scaler = paddle.amp.GradScaler(**self._amp_configs)

J
Jiaqi Liu 已提交
718
        with paddle.amp.auto_cast(
L
Leo Chen 已提交
719 720 721
                enable=self._amp_level != 'O0',
                **self._amp_custom_lists,
                level=self._amp_level):
J
Jiaqi Liu 已提交
722 723
            if self._nranks > 1:
                outputs = self.ddp_model.forward(
Z
zhangchunle 已提交
724
                    *[to_variable(x) for x in inputs])
J
Jiaqi Liu 已提交
725 726
            else:
                outputs = self.model.network.forward(
Z
zhangchunle 已提交
727
                    *[to_variable(x) for x in inputs])
728

L
Leo Chen 已提交
729 730 731
        losses = self.model._loss(*(to_list(outputs) + labels))
        losses = to_list(losses)
        final_loss = fluid.layers.sum(losses)
732

J
Jiaqi Liu 已提交
733
        if self._amp_level != "O0":
L
Leo Chen 已提交
734
            scaled = self.model._scaler.scale(final_loss)
J
Jiaqi Liu 已提交
735
            scaled.backward()
L
lyuwenyu 已提交
736
            if update:
L
Leo Chen 已提交
737
                self.model._scaler.minimize(self.model._optimizer, scaled)
L
lyuwenyu 已提交
738
                self.model.network.clear_gradients()
J
Jiaqi Liu 已提交
739 740
        else:
            final_loss.backward()
L
lyuwenyu 已提交
741 742 743
            if update:
                self.model._optimizer.minimize(final_loss)
                self.model.network.clear_gradients()
L
update  
lyuwenyu 已提交
744

745 746
        metrics = []
        for metric in self.model._metrics:
747
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
748
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
749 750 751 752 753 754
            metrics.append(m)

        return ([to_numpy(l) for l in losses], metrics) \
            if len(metrics) > 0 else [to_numpy(l) for l in losses]

    def eval_batch(self, inputs, labels=None):
755
        self.model.network.eval()
756 757
        self.mode = 'eval'
        inputs = to_list(inputs)
L
LiuChiachi 已提交
758
        self._input_info = _update_input_info(inputs)
759 760 761
        labels = labels or []
        labels = [to_variable(l) for l in to_list(labels)]

Z
zhangchunle 已提交
762
        outputs = self.model.network.forward(*[to_variable(x) for x in inputs])
763 764
        if self.model._loss:
            losses = self.model._loss(*(to_list(outputs) + labels))
765 766
            losses = to_list(losses)

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        if self._nranks > 1:
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]
            labels = [_all_gather(l, self._nranks) for l in labels]
        metrics = []
        for metric in self.model._metrics:
            # cut off padding value.
            if self.model._test_dataloader is not None and self._nranks > 1 \
                    and isinstance(self.model._test_dataloader, DataLoader):
                total_size = len(self.model._test_dataloader.dataset)
                samples = outputs[0].shape[0]
                current_count = self._merge_count.get(self.mode + '_total', 0)
                if current_count + samples >= total_size:
                    outputs = [
                        o[:int(total_size - current_count)] for o in outputs
                    ]
                    labels = [
                        l[:int(total_size - current_count)] for l in labels
                    ]
                    self._merge_count[self.mode + '_total'] = 0
                    self._merge_count[self.mode + '_batch'] = int(total_size -
                                                                  current_count)
                else:
                    self._merge_count[self.mode + '_total'] += samples
                    self._merge_count[self.mode + '_batch'] = samples

792
            metric_outs = metric.compute(*(to_list(outputs) + labels))
Z
zhangchunle 已提交
793
            m = metric.update(*[to_numpy(m) for m in to_list(metric_outs)])
794 795
            metrics.append(m)

796
        if self.model._loss and len(metrics):
797
            return [to_numpy(l) for l in losses], metrics
798
        elif self.model._loss:
799 800 801
            return [to_numpy(l) for l in losses]
        else:
            return metrics
802

803
    def predict_batch(self, inputs):
804
        self.model.network.eval()
805 806
        self.mode = 'test'
        inputs = [to_variable(x) for x in to_list(inputs)]
L
LiuChiachi 已提交
807
        self._input_info = _update_input_info(inputs)
808
        outputs = self.model.network.forward(*inputs)
809 810 811 812 813 814
        if self._nranks > 1 and isinstance(self.model._place, fluid.CUDAPlace):
            outputs = [_all_gather(o, self._nranks) for o in to_list(outputs)]

        return [to_numpy(o) for o in to_list(outputs)]

    def parameters(self, *args, **kwargs):
815
        return self.model.network.parameters(*args, **kwargs)
816 817

    def save(self, path):
818
        params = self.model.network.state_dict()
819
        fluid.save_dygraph(params, path)
L
Leo Chen 已提交
820 821 822 823 824 825 826 827 828 829
        if self.model._optimizer is not None:
            if self.model._optimizer.state_dict():
                optim = self.model._optimizer.state_dict()
                fluid.save_dygraph(optim, path)
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if self.model._scaler.state_dict():
                scaler = self.model._scaler.state_dict()
                paddle.save(scaler, path + '.pdscaler')

    def load(self, param_state_pairs, optim_state, scaler_state=None):
830 831 832 833
        # restore parameter states
        for param, state in param_state_pairs:
            param.set_value(state)

L
Leo Chen 已提交
834 835 836 837
        if hasattr(self.model, '_scaler') and self.model._scaler is not None:
            if scaler_state:
                self.model._scaler.load_state_dict(scaler_state)

838 839 840 841
        # resotre optimizer states
        if not self.model._optimizer or not optim_state:
            return

842 843
        # If optimizer performs set_state_dict when state vars haven't been created,
        # which would happen when set_state_dict before minimize, the state would be
844 845 846 847 848 849 850 851 852 853 854
        # stored in optimizer._accumulators_holder and loaded lazily.
        # To contrive this when loading from static-graph saved states, extend
        # state dict to include keys named accoring to dygraph naming rules.
        # TODO: if len(self.model._optimizer._accumulators) > 0
        converted_state = dict(optim_state)
        opt_unq_name = self.model._optimizer._name
        if opt_unq_name is None:
            opt_unq_name = ''

        opt_cls_name = self.model._optimizer.__class__.__name__
        opt_name = opt_unq_name[:opt_unq_name.rfind("_")]  # remove suffix idx
855
        param_names = [param.name for param in self.model.network.parameters()]
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
        for var_name, state_var in sorted(
                optim_state.items(), key=lambda x: len(x[0]), reverse=True):
            if var_name in ["@LR_DECAY_COUNTER@", "global_step"]:
                # NOTE: dygraph saved global_step is 1 larger than that in
                # static-graph, since the time of global_step to increase is
                # different.
                if var_name == "@LR_DECAY_COUNTER@":
                    converted_state["global_step"] = np.array(
                        converted_state.pop("@LR_DECAY_COUNTER@")) + 1
            else:
                # moment and other accumulators
                # extend state dict to include promising dygraph names
                for param_name in param_names:
                    if var_name.startswith(param_name + "_" + opt_name):
                        # when init optimizer with name
                        accum_name = var_name[len(param_name + "_" + opt_name +
                                                  "_"):]
                    elif var_name.startswith(param_name +
                                             "_") and opt_name == opt_cls_name:
                        # when init optimizer without name
                        accum_name = var_name[len(param_name + "_"):]
                    else:
                        continue
                    # remove suffix idx
                    accum_name = accum_name[:accum_name.rfind("_")]
                    # state names always end with "_0" in dygraph because of the
                    # unique optimizer._name
                    dy_state_name = (param_name + "_" + opt_unq_name + "_" +
                                     accum_name + "_0")
                    converted_state[dy_state_name] = state_var

887 888
        if not hasattr(self.model._optimizer, 'set_state_dict'):
            warnings.warn(
889
                "paddle.fluid.optimizer is deprecated in API 2.0, please use paddle.optimizer instead."
890 891 892 893
            )
            self.model._optimizer.set_dict(converted_state)
        else:
            self.model._optimizer.set_state_dict(converted_state)
894

L
Leo Chen 已提交
895 896 897 898 899 900 901 902 903 904
    def prepare(self):
        if self._amp_level == "O2" and self.model.mode == 'train' and core.is_compiled_with_cuda(
        ):
            self.model.network, self.model._optimizer = paddle.amp.decorate(
                models=self.model.network,
                optimizers=self.model._optimizer,
                level='O2')
        if self._amp_level != "O0":
            self.model._scaler = None

905

906
class Model(object):
907 908 909
    """
    An Model object is network with training and inference features.
    Dynamic graph and static graph are supported at the same time,
910
    switched by `paddle.enable_static()`. The usage is as follows.
911
    But note, the switching between dynamic and static should be before
912
    instantiating a Model. The input description, i.e, paddle.static.InputSpec,
913
    must be required for static graph.
914

L
Leo Chen 已提交
915 916 917
    When training on GPU, auto mixed precision (AMP O1) and pure float16 
    (AMP O2) training are both supported in static mode and dynamic mode.
    In static graph mode, before traing with pure float16 (AMP O2),
J
Jiaqi Liu 已提交
918 919
    `multi_precision` could be set to True when creating optimizer, which can
    avoid poor accuracy or slow convergence in a way, and inputs of dtype float
920 921 922 923
    should be cast to float16 by users. `paddle.static.amp.fp16_guard` API
    should be also used to limit the range of pure float16 training, otherwise,
    'use_fp16_guard' should be set to False by users. However, limiting the
    range of is not supported during training using AMP.
J
Jiaqi Liu 已提交
924

925
    Args:
926 927
        network (paddle.nn.Layer): The network is an instance of
            paddle.nn.Layer.
928 929
        inputs (InputSpec|list|tuple|dict|None): `inputs`, entry points of network,
            could be a InputSpec instance, or list/tuple of InputSpec instances,
930 931
            or dict ({name: InputSpec}), and it couldn't be None in static
            graph.
932 933
        labels (InputSpec|list|tuple|None): `labels`, entry points of network,
            could be a InputSpec instnace or list/tuple of InputSpec instances,
934
            or None. For static graph, if labels is required in loss,
935 936 937
            labels must be set. Otherwise, it could be None.


938
    Examples:
J
Jiaqi Liu 已提交
939 940
        1. A common example

941 942
        .. code-block:: python

943 944 945 946 947 948
          import paddle
          import paddle.nn as nn
          import paddle.vision.transforms as T
          from paddle.static import InputSpec
  
          device = paddle.set_device('cpu') # or 'gpu'
J
Jiaqi Liu 已提交
949

950 951 952 953 954 955 956 957 958 959 960 961 962
          net = nn.Sequential(
              nn.Flatten(1),
              nn.Linear(784, 200),
              nn.Tanh(),
              nn.Linear(200, 10))
  
          # inputs and labels are not required for dynamic graph.
          input = InputSpec([None, 784], 'float32', 'x')
          label = InputSpec([None, 1], 'int64', 'label')
          
          model = paddle.Model(net, input, label)
          optim = paddle.optimizer.SGD(learning_rate=1e-3,
              parameters=model.parameters())
J
Jiaqi Liu 已提交
963

964 965 966 967 968 969 970 971 972 973
          model.prepare(optim,
                        paddle.nn.CrossEntropyLoss(),
                        paddle.metric.Accuracy())
          
          transform = T.Compose([
              T.Transpose(),
              T.Normalize([127.5], [127.5])
          ])
          data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
          model.fit(data, epochs=2, batch_size=32, verbose=1)
J
Jiaqi Liu 已提交
974 975 976 977 978


        2. An example using mixed precision training.

        .. code-block:: python
L
Leo Chen 已提交
979 980
        
          # required: gpu
J
Jiaqi Liu 已提交
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
          import paddle
          import paddle.nn as nn
          import paddle.vision.transforms as T

          def run_example_code():
            device = paddle.set_device('gpu')

            net = nn.Sequential(nn.Flatten(1), nn.Linear(784, 200), nn.Tanh(),
                                nn.Linear(200, 10))

            model = paddle.Model(net)
            optim = paddle.optimizer.SGD(learning_rate=1e-3, parameters=model.parameters())

            amp_configs = {
                "level": "O1",
                "custom_white_list": {'conv2d'},
                "use_dynamic_loss_scaling": True
            }
            model.prepare(optim,
                paddle.nn.CrossEntropyLoss(),
                paddle.metric.Accuracy(),
                amp_configs=amp_configs)

            transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
            data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
            model.fit(data, epochs=2, batch_size=32, verbose=1)

1008
          # mixed precision training is only supported on GPU now.
J
Jiaqi Liu 已提交
1009 1010 1011
          if paddle.is_compiled_with_cuda():
            run_example_code()

1012 1013
    """

1014
    def __init__(self, network, inputs=None, labels=None):
1015
        self.mode = 'train'
1016
        self.network = network
1017 1018
        self._inputs = None
        self._labels = None
1019
        self._loss = None
1020 1021
        self._loss_weights = None
        self._optimizer = None
L
LiuChiachi 已提交
1022
        self._input_info = None
1023
        self._is_shape_inferred = False
1024
        self._test_dataloader = None
L
LiuChiachi 已提交
1025
        self.stop_training = False
1026

1027
        if not in_dygraph_mode():
1028
            if not isinstance(inputs, (list, tuple, dict, Input)):
1029
                raise TypeError(
1030 1031
                    "'inputs' must be list or tuple or dict, and couldn't be None."
                )
1032
        elif inputs:
L
LiuChiachi 已提交
1033
            self._input_info = _update_input_info(inputs)
L
LielinJiang 已提交
1034

1035
        self._inputs = self._verify_spec(inputs, is_input=True)
1036
        self._labels = self._verify_spec(labels)
1037

1038 1039 1040 1041 1042 1043
        # init backend
        if fluid.in_dygraph_mode():
            self._adapter = DynamicGraphAdapter(self)
        else:
            self._adapter = StaticGraphAdapter(self)

L
lyuwenyu 已提交
1044
    def train_batch(self, inputs, labels=None, update=True):
1045
        """
L
lyuwenyu 已提交
1046 1047
        Run one training step on one batch of data. And using `update` indicates
        whether optimizer update gradients computing by this batch.
1048 1049

        Args:
1050 1051 1052 1053 1054 1055 1056
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
            labels (numpy.ndarray|Tensor|list): Batch of labels. It could be 
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
                set None. Default is None.
L
lyuwenyu 已提交
1057 1058
            update (bool): Whether update parameters after loss.backward() computing.
                Using it to accumulate gradients. Default is True.
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069

        Returns:
            A list of scalar training loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
              import numpy as np
1070
              import paddle
1071 1072
              import paddle.nn as nn
              from paddle.static import InputSpec
1073

1074
              device = paddle.set_device('cpu') # or 'gpu'
1075

1076 1077 1078 1079 1080 1081 1082 1083
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10))

              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
              model = paddle.Model(net, input, label)
1084
              optim = paddle.optimizer.SGD(learning_rate=1e-3,
1085
                  parameters=model.parameters())
1086
              model.prepare(optim, paddle.nn.CrossEntropyLoss())
1087 1088 1089 1090 1091
              data = np.random.random(size=(4,784)).astype(np.float32)
              label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
              loss = model.train_batch([data], [label])
              print(loss)
        """
L
lyuwenyu 已提交
1092
        loss = self._adapter.train_batch(inputs, labels, update)
L
LiuChiachi 已提交
1093
        if fluid.in_dygraph_mode() and self._input_info is None:
L
LiuChiachi 已提交
1094
            self._update_inputs()
1095
        return loss
1096

1097
    @paddle.no_grad()
1098 1099 1100 1101 1102
    def eval_batch(self, inputs, labels=None):
        """
        Run one evaluating step on a batch of data.

        Args:
1103 1104 1105 1106 1107 1108 1109
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
            labels (numpy.ndarray|Tensor|list): Batch of labels. It could be 
                a numpy array or paddle.Tensor, or a list of arrays or tensors 
                (in case the model has multiple labels). If has no labels, 
                set None. Default is None.
1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

        Returns:
            A list of scalar testing loss if the model has no metrics,
            or a tuple (list of scalar loss, list of metrics) if the model
            set metrics.

        Examples:

            .. code-block:: python
            
              import numpy as np
1121
              import paddle
1122 1123
              import paddle.nn as nn
              from paddle.static import InputSpec
1124

1125
              device = paddle.set_device('cpu') # or 'gpu'
1126

1127 1128 1129 1130 1131 1132 1133 1134
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10))

              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
              model = paddle.Model(net, input, label)
1135
              optim = paddle.optimizer.SGD(learning_rate=1e-3,
1136
                  parameters=model.parameters())
1137
              model.prepare(optim,
1138
                            paddle.nn.CrossEntropyLoss())
1139 1140 1141 1142 1143
              data = np.random.random(size=(4,784)).astype(np.float32)
              label = np.random.randint(0, 10, size=(4, 1)).astype(np.int64)
              loss = model.eval_batch([data], [label])
              print(loss)
        """
1144
        loss = self._adapter.eval_batch(inputs, labels)
L
LiuChiachi 已提交
1145
        if fluid.in_dygraph_mode() and self._input_info is None:
L
LiuChiachi 已提交
1146
            self._update_inputs()
1147
        return loss
1148

1149
    @paddle.no_grad()
1150
    def predict_batch(self, inputs):
1151
        """
1152
        Run one predicting step on a batch of data.
1153 1154

        Args:
1155 1156 1157
            inputs (numpy.ndarray|Tensor|list): Batch of input data. It could 
                be a numpy array or paddle.Tensor, or a list of arrays or 
                tensors (in case the model has multiple inputs).
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167

        Returns:
            A list of numpy.ndarray of predictions, that is the outputs
            of Model forward.

        Examples:

            .. code-block:: python
            
              import numpy as np
1168
              import paddle
1169
              import paddle.nn as nn
L
LielinJiang 已提交
1170
              from paddle.static import InputSpec
1171

1172
              device = paddle.set_device('cpu') # or 'gpu'
L
LielinJiang 已提交
1173 1174 1175
              
              input = InputSpec([None, 784], 'float32', 'x')
              label = InputSpec([None, 1], 'int64', 'label')
1176

1177 1178 1179 1180 1181 1182
              net = nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10),
                  nn.Softmax())

L
LielinJiang 已提交
1183
              model = paddle.Model(net, input, label)
1184
              model.prepare()
1185
              data = np.random.random(size=(4,784)).astype(np.float32)
1186
              out = model.predict_batch([data])
1187 1188
              print(out)
        """
1189
        loss = self._adapter.predict_batch(inputs)
L
LiuChiachi 已提交
1190
        if fluid.in_dygraph_mode() and self._input_info is None:
L
LiuChiachi 已提交
1191
            self._update_inputs()
1192
        return loss
1193

1194 1195 1196 1197 1198
    def save(self, path, training=True):
        """  
        This function saves parameters, optimizer information or model and 
        paramters only for inference to path. It depends on the parameter
        `training`.
1199

1200 1201
        If `training` is set to True, the parameters saved contain all 
        the trainable Variable, will save to a file with suffix ".pdparams".
1202 1203 1204 1205
        The optimizer information contains all the variable used by optimizer.
        For Adam optimizer, contains beta1, beta2, momentum etc. All the
        information will save to a file with suffix ".pdopt". (If the optimizer
        have no variable need to save (like SGD), the fill will not generated).
1206
        This function will silently overwrite existing file at the target location.
1207

1208
        If `training` is set to False, only inference model will be saved.
1209 1210

        Args:
1211 1212 1213
            path (str): The file prefix to save model. The format
                is 'dirname/file_prefix' or 'file_prefix'. if empty str.
                A exception will be raised.
1214 1215
            training (bool, optional): Whether to save for training. If not, save
                for inference only. Default: True.
1216 1217 1218 1219 1220 1221 1222

        Returns:
            None

        Examples:

            .. code-block:: python
1223

1224
                import paddle
1225
                import paddle.nn as nn
1226
                import paddle.vision.transforms as T
1227
                from paddle.static import InputSpec
1228

1229
                class Mnist(nn.Layer):
1230
                    def __init__(self):
1231
                        super(Mnist, self).__init__()
1232
                        self.net = nn.Sequential(
L
LielinJiang 已提交
1233
                            nn.Flatten(1),
1234 1235 1236 1237
                            nn.Linear(784, 200),
                            nn.Tanh(),
                            nn.Linear(200, 10),
                            nn.Softmax())
1238

1239
                    def forward(self, x):
1240
                        return self.net(x)
1241

1242
                dynamic = True  # False
1243
                # if use static graph, do not set
1244 1245
                if not dynamic:
                    paddle.enable_static()
1246

1247 1248 1249
                input = InputSpec([None, 784], 'float32', 'x')
                label = InputSpec([None, 1], 'int64', 'label')
                model = paddle.Model(Mnist(), input, label)
1250
                optim = paddle.optimizer.SGD(learning_rate=1e-3,
1251
                    parameters=model.parameters())
1252
                model.prepare(optim, paddle.nn.CrossEntropyLoss())
1253 1254 1255 1256 1257 1258 1259
                
                transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
                data = paddle.vision.datasets.MNIST(mode='train', transform=transform)
                
1260
                model.fit(data, epochs=1, batch_size=32, verbose=0)
1261 1262
                model.save('checkpoint/test')  # save for training
                model.save('inference_model', False)  # save for inference
1263
        """
1264

1265
        if ParallelEnv().local_rank == 0:
1266 1267 1268 1269
            if not training:
                self._save_inference_model(path)
            else:
                self._adapter.save(path)
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

    def load(self, path, skip_mismatch=False, reset_optimizer=False):
        """
        Load from files storing the model states and optimizer states. The file
        for optimizer states is not necessary if no need to restore the optimizer.

        NOTE: parameters are retrieved out from the file storing model states
        accoring to their structured names.

        For fine-tuning or transfer-learning models where some of the layers have
        changed, keep parameters needed to restore have same structured names in
        the pre-trained model and fine-tuning model.

        Args:
            path (str): The prefix of files storing the model states and
                optimizer states. The files would be `path.pdparams` and
                `path.pdopt` separately, and the latter is not necessary
                when no need to restore.
            skip_mismatch (bool): Whether to skip the loading of mismatch
                parameter or raise an error when mismatch happens (not found
                the parameter in file storing model states of or receives a
                mismatch shape).
            reset_optimizer (bool): If True, ignore the providing file storing
                optimizer states and initialize optimizer states from scratch.
                Otherwise, restore optimizer states from `path.pdopt` if
                a optimizer has been set to the model. Default False.

        Returns:
            None

        Examples:

            .. code-block:: python
            
1304
              import paddle
1305
              import paddle.nn as nn
L
LielinJiang 已提交
1306 1307
              from paddle.static import InputSpec

1308
              device = paddle.set_device('cpu')
L
LielinJiang 已提交
1309 1310

              input = InputSpec([None, 784], 'float32', 'x')
1311 1312 1313 1314 1315

              model = paddle.Model(nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
                  nn.Linear(200, 10),
L
LielinJiang 已提交
1316 1317
                  nn.Softmax()), input)

1318
              model.save('checkpoint/test')
1319 1320 1321 1322 1323 1324 1325
              model.load('checkpoint/test')
        """

        def _load_state_from_path(path):
            if not os.path.exists(path):
                return
            with open(path, 'rb') as f:
T
tianshuo78520a 已提交
1326
                return pickle.load(f, encoding='latin1')
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349

        def _check_match(key, param):
            state = param_state.get(key, None)
            if state is None:
                raise ValueError(
                    "{} is not found in the providing file.".format(key))
            if list(state.shape) != list(param.shape):
                raise ValueError(
                    "{} receives a shape {}, but the expected shape is {}.".
                    format(key, list(state.shape), list(param.shape)))
            return param, state

        def _strip_postfix(path):
            path, ext = os.path.splitext(path)
            assert ext in ['', '.pdparams', '.pdopt', '.pdmodel'], \
                    "Unknown postfix {} from weights".format(ext)
            return path

        path = _strip_postfix(path)
        param_state = _load_state_from_path(path + ".pdparams")
        assert param_state, "Failed to load parameters, please check path."

        matched_param_state = []
1350
        for key, param in self.network.state_dict().items():
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
            try:
                match_res = _check_match(key, param)
            except ValueError as err:
                if skip_mismatch:
                    warnings.warn(
                        ("Skip loading for {}. ".format(key) + str(err)))
                    # reset optimizer when mismatch happens
                    reset_optimizer = True
                else:
                    raise err
            matched_param_state.append(match_res)

        optim_state = None if reset_optimizer else _load_state_from_path(
            path + ".pdopt")
L
Leo Chen 已提交
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

        # TODO: support save/load scaler state in static graph
        if in_dygraph_mode():
            scaler_state = None
            if hasattr(self, '_scaler') and self._scaler is not None:
                if os.path.exists(path + '.pdscaler'):
                    scaler_state = paddle.load(path + '.pdscaler')

            return self._adapter.load(matched_param_state, optim_state,
                                      scaler_state)
        else:
            return self._adapter.load(matched_param_state, optim_state)
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389

    def parameters(self, *args, **kwargs):
        """
        Returns a list of parameters of the model.

        Returns:
            A list of Parameter in static graph.
            A list of ParamBase in dynamic graph.

        Examples:

            .. code-block:: python

1390
              import paddle
1391
              import paddle.nn as nn
L
LielinJiang 已提交
1392
              from paddle.static import InputSpec
1393

L
LielinJiang 已提交
1394 1395
              input = InputSpec([None, 784], 'float32', 'x')
              
1396 1397 1398
              model = paddle.Model(nn.Sequential(
                  nn.Linear(784, 200),
                  nn.Tanh(),
L
LielinJiang 已提交
1399 1400
                  nn.Linear(200, 10)), input)

1401 1402 1403 1404
              params = model.parameters()
        """
        return self._adapter.parameters()

J
Jiaqi Liu 已提交
1405 1406 1407
    def _prepare_amp(self, amp_configs):
        def _check_pure_fp16_configs():
            # pure float16 training has some restricts now
L
Leo Chen 已提交
1408 1409 1410 1411
            if self._adapter._amp_level == "O2" and self._optimizer._grad_clip:
                # clip by value is not supported
                assert isinstance(self._optimizer._grad_clip, (paddle.nn.ClipGradByGlobalNorm, paddle.nn.ClipGradByNorm)), \
                     "Only GradientClipByNorm and GradientClipByGlobalNorm are supported in amp training with level=O2 currently."
J
Jiaqi Liu 已提交
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440

        self._adapter._amp_custom_lists = {}
        self._adapter._amp_configs = {}

        # check and get level of mixed precision training
        if not amp_configs:
            self._adapter._amp_level = 'O0'
            return
        elif isinstance(amp_configs, str):
            if amp_configs not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "The level of amp_configs should be 'O0', 'O1' or 'O2'.")
            self._adapter._amp_level = amp_configs
            _check_pure_fp16_configs()
            return
        else:
            if 'level' not in amp_configs:
                self._adapter._amp_level = 'O1'
            elif amp_configs['level'] not in ('O0', 'O1', 'O2'):
                raise ValueError(
                    "amp_configs['level'] should be 'O0', 'O1' or 'O2'.")
            else:
                self._adapter._amp_level = amp_configs['level']
        amp_config_key_set = set(amp_configs.keys()) - {'level'}
        if not amp_config_key_set or self._adapter._amp_level == 'O0':
            return

        if 'use_pure_fp16' in amp_configs:
            raise ValueError(
1441
                "'use_pure_fp16' is an invalid parameter, the level of mixed precision training only depends on 'O1' or 'O2'."
J
Jiaqi Liu 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
            )

        _check_pure_fp16_configs()

        # construct amp_custom_lists
        if self._adapter._amp_level != 'O0' and amp_config_key_set:
            for param_name in [
                    'custom_white_list', 'custom_black_list',
                    'custom_black_varnames'
            ]:
                if param_name in amp_config_key_set:
                    self._adapter._amp_custom_lists[param_name] = amp_configs[
                        param_name]
                    amp_config_key_set -= {param_name}

        def _check_amp_configs(amp_config_key_set):
            accepted_param_set = {
                'init_loss_scaling',
                'incr_ratio',
                'decr_ratio',
                'incr_every_n_steps',
                'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling',
                'use_fp16_guard',
            }
            if amp_config_key_set - accepted_param_set:
                raise ValueError(
1469 1470
                    "Except for 'level', the keys of 'amp_configs' must be accepted by mixed precision APIs, but {} could not be recognized.".
                    format(tuple(amp_config_key_set - accepted_param_set)))
J
Jiaqi Liu 已提交
1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

            if 'use_fp16_guard' in amp_config_key_set:
                if in_dygraph_mode():
                    raise ValueError(
                        "'use_fp16_guard' is supported in static mode only.")
                self._adapter._use_fp16_guard = amp_configs['use_fp16_guard']
                amp_config_key_set.remove('use_fp16_guard')

            return amp_config_key_set

        amp_configs_set = _check_amp_configs(amp_config_key_set)
        for key in amp_configs_set:
            self._adapter._amp_configs[key] = amp_configs[key]

    def prepare(self, optimizer=None, loss=None, metrics=None,
                amp_configs=None):
1487 1488 1489 1490 1491 1492 1493
        """
        Configures the model before runing.

        Args:
            optimizer (Optimizer|None): Optimizer must be set in training
                and should be a Optimizer instance. It can be None in eval
                and test mode.
1494 1495
            loss (Loss|callable function|None): Loss function can
                be a `paddle.nn.Layer` instance or any callable function
1496 1497
                taken the predicted values and ground truth values as input.
                It can be None when there is no loss.
1498 1499
            metrics (Metric|list of Metric|None): If metrics is set, all
                metrics will be calculated and output in train/eval mode.
J
Jiaqi Liu 已提交
1500 1501 1502 1503
            amp_configs (str|dict|None): AMP configurations. If AMP or pure
                float16 training is used, the key 'level' of 'amp_configs'
                should be set to 'O1' or 'O2' respectively. Otherwise, the
                value of 'level' defaults to 'O0', which means float32
1504 1505
                training. In addition to 'level', parameters consistent with
                mixed precision API could also be passed in. The supported
J
Jiaqi Liu 已提交
1506 1507 1508 1509
                keys are: 'init_loss_scaling', 'incr_ratio', 'decr_ratio',
                'incr_every_n_steps', 'decr_every_n_nan_or_inf',
                'use_dynamic_loss_scaling', 'custom_white_list',
                'custom_black_list', and 'custom_black_varnames'or
1510 1511 1512 1513 1514 1515
                'use_fp16_guard' is only supported in static mode. Mixed
                precision API documentations  :ref:`api_paddle_amp_auto_cast`
                and  :ref:`api_paddle_amp_GradScaler` could be referenced
                for details. For convenience, 'amp_configs' could be set to
                'O1' or 'O2' if no more parameters are needed. 'amp_configs'
                could be None in float32 training. Default: None.
1516 1517 1518
        Returns:
            None
        """
1519 1520
        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
1521 1522 1523 1524 1525 1526 1527
            global _parallel_context_initialized
            if ParallelEnv().nranks > 1 and not _parallel_context_initialized:
                if fluid.in_dygraph_mode():
                    main_prog_seed = fluid.default_main_program().random_seed
                    startup_prog_seed = fluid.default_startup_program(
                    ).random_seed
                    fluid.disable_dygraph()
1528
                    paddle.disable_static(self._place)
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
                    # enable_dygraph would create and switch to a new program,
                    # thus also copy seed to the new program
                    fluid.default_main_program().random_seed = main_prog_seed
                    fluid.default_startup_program(
                    ).random_seed = startup_prog_seed
                else:
                    prepare_distributed_context(self._place)
                _parallel_context_initialized = True

        self._optimizer = optimizer
1539 1540
        if loss is not None:
            if not isinstance(loss, paddle.nn.Layer) and not callable(loss):
1541 1542 1543
                raise TypeError(
                    "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
                )
1544
        self._loss = loss
1545 1546 1547 1548 1549 1550 1551

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
        self._metrics = to_list(metrics)
J
Jiaqi Liu 已提交
1552
        self._prepare_amp(amp_configs)
1553

L
Leo Chen 已提交
1554
        self._adapter.prepare()
1555

1556
    def fit(self,
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
            train_data=None,
            eval_data=None,
            batch_size=1,
            epochs=1,
            eval_freq=1,
            log_freq=10,
            save_dir=None,
            save_freq=1,
            verbose=2,
            drop_last=False,
            shuffle=True,
            num_workers=0,
L
update  
lyuwenyu 已提交
1569
            callbacks=None,
1570 1571
            accumulate_grad_batches=1,
            num_iters=None):
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
        """
        Trains the model for a fixed number of epochs. If `eval_data` is set,
        evaluation will be done at the end of each epoch.

        Args:
            train_data (Dataset|DataLoader): An iterable data loader is used for 
                train. An instance of paddle paddle.io.Dataset or 
                paddle.io.Dataloader is recomended. Default: None.
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation at the end of epoch. If None, will not do evaluation. 
                An instance of paddle.io.Dataset or paddle.io.Dataloader 
                is recomended. Default: None.
            batch_size (int): Integer number. The batch size of train_data
                and eval_data. When train_data and eval_data are both the
                instance of Dataloader, this parameter will be ignored.
                Default: 1.
            epochs (int): Integer number. The number of epochs to train
                the model. Default: 1.
            eval_freq (int): The frequency, in number of epochs, an evalutation
                is performed. Default: 1.
            log_freq (int): The frequency, in number of steps, the training logs
                are printed. Default: 10.
            save_dir(str|None): The directory to save checkpoint during training.
                If None, will not save checkpoint. Default: None.
            save_freq (int): The frequency, in number of epochs, to save
                checkpoint. Default: 1.
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per epoch. Default: 2.
            drop_last (bool): Whether drop the last incomplete batch of
                train_data when dataset size is not divisible by the batch size.
                When train_data is an instance of Dataloader, this parameter
                will be ignored. Default: False.
            shuffle (bool): Whther to shuffle train_data. When train_data is
                an instance of Dataloader, this parameter will be ignored.
                Default: True.
            num_workers (int): The number of subprocess to load data, 0 for no
                subprocess used and loading data in main process.
                When train_data and eval_data are both the instance of
                Dataloader, this parameter will be ignored. Default: 0.
            callbacks (Callback|None): A list of `Callback` instances to apply
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
L
lyuwenyu 已提交
1614 1615
            accumulate_grad_batches (int): The number of batches to accumulate gradident 
                during training process before optimizer updates. It can mimic large batch
L
lyuwenyu 已提交
1616
                size. Default: 1.
1617 1618 1619
            num_iters (int|None): Integer number. The number of iterations to train
                the model. If None, follow `epochs` to train the model, otherwise, train
                the model `num_iters` times. Default: None.
L
lyuwenyu 已提交
1620
            
1621 1622 1623 1624 1625 1626 1627 1628 1629
        Returns:
            None

        Examples:
            1. An example use Dataset and set btch size, shuffle in fit.
               How to make a batch is done internally.

            .. code-block:: python

1630
              import paddle
1631
              import paddle.vision.transforms as T
1632
              from paddle.vision.datasets import MNIST
1633
              from paddle.static import InputSpec
1634 1635

              dynamic = True
1636 1637 1638
              if not dynamic:
                  paddle.enable_static()

1639 1640 1641 1642
              transform = T.Compose([
                  T.Transpose(),
                  T.Normalize([127.5], [127.5])
              ])
1643 1644
              train_dataset = MNIST(mode='train', transform=transform)
              val_dataset = MNIST(mode='test', transform=transform)
1645
           
1646 1647
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
1648
           
1649
              model = paddle.Model(
L
LielinJiang 已提交
1650
                  paddle.vision.models.LeNet(),
1651
                  input, label)
1652 1653
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
1654 1655
              model.prepare(
                  optim,
1656
                  paddle.nn.CrossEntropyLoss(),
1657
                  paddle.metric.Accuracy(topk=(1, 2)))
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
              model.fit(train_dataset,
                        val_dataset,
                        epochs=2,
                        batch_size=64,
                        save_dir='mnist_checkpoint')

            2. An example use DataLoader, batch size and shuffle is set in
               DataLoader.

            .. code-block:: python

1669
              import paddle
1670
              import paddle.vision.transforms as T
1671
              from paddle.vision.datasets import MNIST
1672
              from paddle.static import InputSpec
1673 1674

              dynamic = True
1675 1676
              if not dynamic:
                  paddle.enable_static()
1677 1678 1679 1680 1681
              
              transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
1682
              train_dataset = MNIST(mode='train', transform=transform)
1683
              train_loader = paddle.io.DataLoader(train_dataset,
1684 1685
                  batch_size=64)
              val_dataset = MNIST(mode='test', transform=transform)
1686
              val_loader = paddle.io.DataLoader(val_dataset,
1687
                  batch_size=64)
1688
           
1689 1690
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
1691
           
1692
              model = paddle.Model(
L
LielinJiang 已提交
1693
                  paddle.vision.models.LeNet(), input, label)
1694 1695
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
1696 1697
              model.prepare(
                  optim,
1698
                  paddle.nn.CrossEntropyLoss(),
1699
                  paddle.metric.Accuracy(topk=(1, 2)))
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738
              model.fit(train_loader,
                        val_loader,
                        epochs=2,
                        save_dir='mnist_checkpoint')
        """
        assert train_data is not None, \
                "train_data must be given!"

        if isinstance(train_data, Dataset):
            train_sampler = DistributedBatchSampler(
                train_data,
                batch_size=batch_size,
                shuffle=shuffle,
                drop_last=drop_last)
            train_loader = DataLoader(
                train_data,
                batch_sampler=train_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            train_loader = train_data

        if eval_data is not None and isinstance(eval_data, Dataset):
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size)
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        elif eval_data is not None:
            eval_loader = eval_data
        else:
            eval_loader = None

        do_eval = eval_loader is not None
        self._test_dataloader = eval_loader
L
update  
lyuwenyu 已提交
1739

L
lyuwenyu 已提交
1740
        self._accumulate = accumulate_grad_batches
L
update  
lyuwenyu 已提交
1741

1742
        steps = self._len_data_loader(train_loader)
1743
        self.num_iters = num_iters
1744 1745
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                steps, int):
1746 1747 1748
            assert num_iters > 0, "num_iters must be greater than 0!"
            epochs = (num_iters // steps) + 1
            steps = min(num_iters, steps)
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
        cbks = config_callbacks(
            callbacks,
            model=self,
            epochs=epochs,
            steps=steps,
            log_freq=log_freq,
            save_freq=save_freq,
            save_dir=save_dir,
            verbose=verbose,
            metrics=self._metrics_name(), )

L
LiuChiachi 已提交
1760 1761 1762
        if any(isinstance(k, EarlyStopping) for k in cbks) and not do_eval:
            warnings.warn("EarlyStopping needs validation data.")

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
        cbks.on_begin('train')
        for epoch in range(epochs):
            cbks.on_epoch_begin(epoch)
            logs = self._run_one_epoch(train_loader, cbks, 'train')
            cbks.on_epoch_end(epoch, logs)

            if do_eval and epoch % eval_freq == 0:

                eval_steps = self._len_data_loader(eval_loader)
                cbks.on_begin('eval', {
                    'steps': eval_steps,
                    'metrics': self._metrics_name()
                })

                eval_logs = self._run_one_epoch(eval_loader, cbks, 'eval')

                cbks.on_end('eval', eval_logs)
1780 1781
            if self.stop_training:
                break
1782 1783 1784

        cbks.on_end('train', logs)
        self._test_dataloader = None
L
update  
lyuwenyu 已提交
1785

1786 1787 1788 1789 1790 1791 1792 1793
    def evaluate(self,
                 eval_data,
                 batch_size=1,
                 log_freq=10,
                 verbose=2,
                 num_workers=0,
                 callbacks=None,
                 num_iters=None):
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
        """
        Evaluate the loss and metrics of the model on input dataset.

        Args:
            eval_data (Dataset|DataLoader): An iterable data loader is used for
                evaluation. An instance of paddle.io.Dataset or 
                paddle.io.Dataloader is recomended.
            batch_size (int): Integer number. The batch size of train_data
                and eval_data.  When eval_data is the instance of Dataloader,
                this argument will be ignored. Default: 1.
            log_freq (int): The frequency, in number of steps, the eval logs
                are printed. Default: 10.
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per epoch. Default: 2.
            num_workers (int): The number of subprocess to load data,
                0 for no subprocess used and loading data in main process. When
                train_data and eval_data are both the instance of Dataloader,
                this parameter will be ignored. Default: 0.
            callbacks (Callback|None): A list of `Callback` instances to apply
                during training. If None, `ProgBarLogger` and `ModelCheckpoint`
                are automatically inserted. Default: None.
1815 1816 1817
            num_iters (int|None): Integer number. The number of iterations to
                evaluate the model. If None, evaluate on whole input dataset,
                otherwise, evaluate `num_iters` times. Default: None.
1818 1819 1820 1821 1822
        Returns:
            dict: Result of metric. The key is the names of Metric,
                value is a scalar or numpy.array.

        Examples:
1823 1824

          .. code-block:: python
1825

1826
            import paddle
1827
            import paddle.vision.transforms as T
1828
            from paddle.static import InputSpec
1829

1830
            # declarative mode
1831 1832 1833 1834 1835
            transform = T.Compose([
                    T.Transpose(),
                    T.Normalize([127.5], [127.5])
                ])
            val_dataset = paddle.vision.datasets.MNIST(mode='test', transform=transform)
1836

1837 1838 1839
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            label = InputSpec([None, 1], 'int64', 'label')
            model = paddle.Model(paddle.vision.models.LeNet(), input, label)
1840
            model.prepare(metrics=paddle.metric.Accuracy())
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866
            result = model.evaluate(val_dataset, batch_size=64)
            print(result)
        """

        if eval_data is not None and isinstance(eval_data, Dataset):
            eval_sampler = DistributedBatchSampler(
                eval_data, batch_size=batch_size)
            eval_loader = DataLoader(
                eval_data,
                batch_sampler=eval_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            eval_loader = eval_data

        self._test_dataloader = eval_loader

        cbks = config_callbacks(
            callbacks,
            model=self,
            log_freq=log_freq,
            verbose=verbose,
            metrics=self._metrics_name(), )

        eval_steps = self._len_data_loader(eval_loader)
1867
        self.num_iters = num_iters
1868 1869
        if num_iters is not None and isinstance(num_iters, int) and isinstance(
                eval_steps, int):
1870 1871 1872
            assert num_iters > 0, "num_iters must be greater than 0!"
            eval_steps = min(num_iters, eval_steps)
            self.num_iters = eval_steps
1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
        cbks.on_begin('eval',
                      {'steps': eval_steps,
                       'metrics': self._metrics_name()})

        logs = self._run_one_epoch(eval_loader, cbks, 'eval')

        cbks.on_end('eval', logs)

        self._test_dataloader = None

        eval_result = {}
        for k in self._metrics_name():
            eval_result[k] = logs[k]

        return eval_result

    def predict(self,
                test_data,
                batch_size=1,
                num_workers=0,
                stack_outputs=False,
1894
                verbose=1,
1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
                callbacks=None):
        """
        Compute the output predictions on testing data.

        Args:
            test_data (Dataset|DataLoader): An iterable data loader is used for
                predict. An instance of paddle.io.Dataset or paddle.io.Dataloader
                is recomended.
            batch_size (int): Integer number. The batch size of train_data and eval_data.
                When train_data and eval_data are both the instance of Dataloader, this
                argument will be ignored. Default: 1.
            num_workers (int): The number of subprocess to load data, 0 for no subprocess 
                used and loading data in main process. When train_data and eval_data are
                both the instance of Dataloader, this argument will be ignored. Default: 0.
1909
            stack_outputs (bool): Whether stack output field like a batch, as for an output
1910 1911 1912 1913 1914
                filed of a sample is in shape [X, Y], test_data contains N samples, predict
                output field will be in shape [N, X, Y] if stack_output is True, and will
                be a length N list in shape [[X, Y], [X, Y], ....[X, Y]] if stack_outputs
                is False. stack_outputs as False is used for LoDTensor output situation,
                it is recommended set as True if outputs contains no LoDTensor. Default: False.
1915 1916
            verbose (int): The verbosity mode, should be 0, 1, or 2. 0 = silent,
                1 = progress bar, 2 = one line per batch. Default: 1.
1917
            callbacks(Callback): A Callback instance, default None.
1918

1919 1920 1921 1922
        Returns:
            list: output of models.

        Examples:
1923 1924

          .. code-block:: python
1925 1926

            import numpy as np
1927
            import paddle
1928
            from paddle.static import InputSpec
1929

1930
            class MnistDataset(paddle.vision.datasets.MNIST):
1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
                def __init__(self, mode, return_label=True):
                    super(MnistDataset, self).__init__(mode=mode)
                    self.return_label = return_label

                def __getitem__(self, idx):
                    img = np.reshape(self.images[idx], [1, 28, 28])
                    if self.return_label:
                        return img, np.array(self.labels[idx]).astype('int64')
                    return img,

                def __len__(self):
                    return len(self.images)

            test_dataset = MnistDataset(mode='test', return_label=False)

L
LielinJiang 已提交
1946
            # imperative mode
1947 1948
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            model = paddle.Model(paddle.vision.models.LeNet(), input)
1949
            model.prepare()
1950
            result = model.predict(test_dataset, batch_size=64)
1951
            print(len(result[0]), result[0][0].shape)
1952

L
LielinJiang 已提交
1953
            # declarative mode
1954
            device = paddle.set_device('cpu')
L
LielinJiang 已提交
1955 1956 1957
            paddle.enable_static()
            input = InputSpec([-1, 1, 28, 28], 'float32', 'image')
            model = paddle.Model(paddle.vision.models.LeNet(), input)
1958
            model.prepare()
L
LielinJiang 已提交
1959

1960 1961
            result = model.predict(test_dataset, batch_size=64)
            print(len(result[0]), result[0][0].shape)
1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
        """

        if test_data is not None and isinstance(test_data, Dataset):
            test_sampler = DistributedBatchSampler(
                test_data, batch_size=batch_size)
            test_loader = DataLoader(
                test_data,
                batch_sampler=test_sampler,
                places=self._place,
                num_workers=num_workers,
                return_list=True)
        else:
            test_loader = test_data

        self._test_dataloader = test_loader

1978
        cbks = config_callbacks(callbacks, model=self, verbose=verbose)
1979 1980 1981 1982

        test_steps = self._len_data_loader(test_loader)
        logs = {'steps': test_steps}

1983
        cbks.on_begin('predict', logs)
1984 1985 1986

        outputs = []

1987
        logs, outputs = self._run_one_epoch(test_loader, cbks, 'predict')
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997

        outputs = list(zip(*outputs))

        # NOTE: for lod tensor output, we should not stack outputs
        # for stacking may lose its detail info
        if stack_outputs:
            outputs = [np.vstack(outs) for outs in outputs]

        self._test_dataloader = None

1998
        cbks.on_end('predict', logs)
1999 2000
        return outputs

2001
    def _save_inference_model(self, path):
2002
        """
2003
        Save inference model can be used in static or dynamic mode.
2004 2005

        Args:
2006 2007
            path (str): The path prefix to save model. The format is
                ``dirname/file_prefix`` or ``file_prefix``.
2008
        Returns:
2009
            None
2010 2011
        """

2012
        if fluid.in_dygraph_mode():
2013 2014
            with fluid.framework._dygraph_guard(None):
                layer = self.network
L
LiuChiachi 已提交
2015
                if self._input_info is None:  # No provided or inferred
2016
                    raise RuntimeError(
L
LiuChiachi 已提交
2017
                        "Saving inference model needs 'inputs' or running before saving. Please specify 'inputs' in Model initialization or input training data and perform a training for shape derivation."
2018 2019 2020 2021
                    )
                if self._is_shape_inferred:
                    warnings.warn(
                        "'inputs' was not specified when Model initialization, so the input shape to be saved will be the shape derived from the user's actual inputs. The input shape to be saved is %s. For saving correct input shapes, please provide 'inputs' for Model initialization."
L
LiuChiachi 已提交
2022 2023
                        % self._input_info[0])

2024
                paddle.jit.save(layer, path, input_spec=self._inputs)
2025

2026
        else:
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
            # path check
            file_prefix = os.path.basename(path)
            if file_prefix == "":
                raise ValueError(
                    "The input path MUST be format of dirname/file_prefix "
                    "[dirname\\file_prefix in Windows system], but received "
                    "file_prefix is empty string.")

            dirname = os.path.dirname(path)
            if dirname and not os.path.exists(dirname):
                os.makedirs(dirname)

            model_path = dirname
            model_filename = file_prefix + INFER_MODEL_SUFFIX
            params_filename = file_prefix + INFER_PARAMS_SUFFIX

2043 2044 2045 2046 2047 2048 2049 2050 2051
            prog = self._adapter._progs.get('test', None)
            assert prog, \
                "Model is not ready, please call `model.prepare()` first"

            infer_prog = prog.clone(for_test=True)

            input_names = [v.name for v in self._adapter._input_vars['test']]
            endpoints = self._adapter._endpoints['test']['output']

2052 2053
            fluid.io.save_inference_model(
                model_path,
2054 2055 2056 2057 2058
                input_names,
                endpoints,
                self._adapter._executor,
                main_program=infer_prog,
                model_filename=model_filename,
2059
                params_filename=params_filename)
2060

L
update  
lyuwenyu 已提交
2061 2062 2063 2064 2065 2066
    def _run_one_epoch(
            self,
            data_loader,
            callbacks,
            mode,
            logs={}, ):
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
        outputs = []
        for step, data in enumerate(data_loader):
            # data might come from different types of data_loader and have
            # different format, as following:
            # 1. DataLoader in static graph:
            #    [[input1, input2, ..., label1, lable2, ...]]
            # 2. DataLoader in dygraph
            #    [input1, input2, ..., label1, lable2, ...]
            # 3. custumed iterator yield concated inputs and labels:
            #   [input1, input2, ..., label1, lable2, ...]
            # 4. custumed iterator yield seperated inputs and labels:
            #   ([input1, input2, ...], [label1, lable2, ...])
            # To handle all of these, flatten (nested) list to list.
            data = flatten(data)
            # LoDTensor.shape is callable, where LoDTensor comes from
            # DataLoader in static graph
2083

2084 2085 2086 2087 2088
            batch_size = data[0].shape()[0] if callable(data[
                0].shape) else data[0].shape[0]

            callbacks.on_batch_begin(mode, step, logs)

2089
            if mode != 'predict':
L
update  
lyuwenyu 已提交
2090

L
lyuwenyu 已提交
2091 2092
                _inputs = [data[:len(self._inputs)], data[len(self._inputs):]]
                if mode == 'train':
L
lyuwenyu 已提交
2093 2094
                    _inputs.append((step + 1) % self._accumulate == 0 or
                                   step + 1 == len(data_loader))
L
update  
lyuwenyu 已提交
2095

L
lyuwenyu 已提交
2096
                outs = getattr(self, mode + '_batch')(*_inputs)
L
update  
lyuwenyu 已提交
2097

2098
                if self._metrics and self._loss:
2099
                    metrics = [[l[0] for l in outs[0]]]
2100
                elif self._loss:
2101 2102 2103
                    metrics = [[l[0] for l in outs]]
                else:
                    metrics = []
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113

                # metrics
                for metric in self._metrics:
                    res = metric.accumulate()
                    metrics.extend(to_list(res))

                assert len(self._metrics_name()) == len(metrics)
                for k, v in zip(self._metrics_name(), metrics):
                    logs[k] = v
            else:
L
LielinJiang 已提交
2114
                if self._inputs is not None:
2115
                    outs = self.predict_batch(data[:len(self._inputs)])
L
LielinJiang 已提交
2116
                else:
2117
                    outs = self.predict_batch(data)
L
LielinJiang 已提交
2118

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
                outputs.append(outs)

            logs['step'] = step
            if mode == 'train' or self._adapter._merge_count.get(
                    mode + '_batch', 0) <= 0:
                logs['batch_size'] = batch_size * ParallelEnv().nranks
            else:
                logs['batch_size'] = self._adapter._merge_count[mode + '_batch']

            callbacks.on_batch_end(mode, step, logs)
2129 2130
            if hasattr(self, 'num_iters') and self.num_iters is not None:
                self.num_iters -= 1
2131 2132 2133
                if self.num_iters <= 0:
                    self.stop_training = True
                    del self.num_iters
2134
                    break
2135 2136
        self._reset_metrics()

2137
        if mode == 'predict':
2138 2139 2140
            return logs, outputs
        return logs

L
LielinJiang 已提交
2141
    def summary(self, input_size=None, dtype=None):
L
LielinJiang 已提交
2142 2143 2144 2145 2146 2147 2148 2149
        """Prints a string summary of the network.

        Args:
            input_size (tuple|InputSpec|list[tuple|InputSpec], optional): size of input tensor. 
                    if not set, input_size will get from ``self._inputs`` if network only have 
                    one input, input_size can be tuple or InputSpec. if model have multiple 
                    input, input_size must be a list which contain every input's shape. 
                    Default: None.
2150
            dtype (str, optional): if dtype is None, 'float32' will be used, Default: None.
L
LielinJiang 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163

        Returns:
            Dict: a summary of the network including total params and total trainable params.

        Examples:
            .. code-block:: python

              import paddle
              from paddle.static import InputSpec
           
              input = InputSpec([None, 1, 28, 28], 'float32', 'image')
              label = InputSpec([None, 1], 'int64', 'label')
           
2164
              model = paddle.Model(paddle.vision.models.LeNet(),
L
LielinJiang 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
                  input, label)
              optim = paddle.optimizer.Adam(
                  learning_rate=0.001, parameters=model.parameters())
              model.prepare(
                  optim,
                  paddle.nn.CrossEntropyLoss())

              params_info = model.summary()
              print(params_info)

        """
2176 2177 2178 2179 2180 2181
        assert (input_size is not None or self._inputs is not None
                ), "'input_size' or 'self._input' must be set"
        if input_size is not None:
            _input_size = input_size
        else:
            _input_size = self._inputs
2182
        return summary(self.network, _input_size, dtypes=dtype)
L
LielinJiang 已提交
2183

L
LiuChiachi 已提交
2184
    def _verify_spec(self, specs, shapes=None, dtypes=None, is_input=False):
2185 2186
        out_specs = []

2187 2188 2189 2190 2191 2192
        if specs is None:
            # Note(Aurelius84): If not specific specs of `Input`, using argument names of `forward` function
            # to generate `Input`. But how can we know the actual shape of each input tensor?

            if is_input:
                arg_names = extract_args(self.network.forward)[1:]
L
LiuChiachi 已提交
2193 2194 2195
                # While Saving inference model in dygraph, and providing inputs only in running.
                if shapes is not None and dtypes is not None and fluid.in_dygraph_mode(
                ):
2196 2197
                    out_specs = [
                        Input(
L
LiuChiachi 已提交
2198
                            name=n, dtype=dtypes[i], shape=shapes[i])
2199 2200 2201 2202 2203 2204 2205
                        for i, n in enumerate(arg_names)
                    ]
                else:
                    out_specs = [Input(name=n, shape=[None]) for n in arg_names]
            else:
                out_specs = to_list(specs)
        elif isinstance(specs, dict):
2206 2207 2208 2209 2210
            assert is_input is False
            out_specs = [
                specs[n] for n in extract_args(self.network.forward)
                if n != 'self'
            ]
2211 2212 2213 2214 2215 2216 2217 2218
        else:
            out_specs = to_list(specs)
        # Note: checks each element has specificed `name`.
        if out_specs is not None:
            for i, spec in enumerate(out_specs):
                assert isinstance(spec, Input)
                if spec.name is None:
                    raise ValueError(
2219 2220
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
2221 2222 2223

        return out_specs

2224 2225 2226 2227 2228
    def _reset_metrics(self):
        for metric in self._metrics:
            metric.reset()

    def _metrics_name(self):
2229
        metrics_name = ['loss'] if self._loss else []
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
        for m in self._metrics:
            metrics_name.extend(to_list(m.name()))
        return metrics_name

    def _len_data_loader(self, data_loader):
        try:
            steps = len(data_loader)
        except Exception:
            steps = None
        return steps
L
LiuChiachi 已提交
2240 2241 2242

    def _update_inputs(self):
        "Update self._inputs according to given inputs."
L
LiuChiachi 已提交
2243 2244 2245 2246 2247
        self._input_info = self._adapter._input_info
        if self._input_info is not None and len(self._input_info) == 2:
            self._inputs = self._verify_spec(None, self._input_info[0],
                                             self._input_info[1], True)
            self._is_shape_inferred = True