io.py 26.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
F
fengjiayi 已提交
14
import contextlib
D
dzhwinter 已提交
15

Y
Yu Yang 已提交
16
from .. import core
T
typhoonzero 已提交
17
from ..framework import convert_np_dtype_to_dtype_, default_main_program, default_startup_program, Program
Y
Yu Yang 已提交
18
from ..unique_name import generate as unique_name
T
WIP  
typhoonzero 已提交
19 20
from control_flow import BlockGuard
from ..layer_helper import LayerHelper
Y
Refine  
Yu Yang 已提交
21
from ..executor import global_scope
Y
yuyang18 已提交
22
from layer_function_generator import generate_layer_fn, templatedoc
Y
Yu Yang 已提交
23

Y
Yu Yang 已提交
24
__all__ = [
S
sneaxiy 已提交
25 26 27 28
    'data', 'BlockGuardServ', 'ListenAndServ', 'Send', 'Recv',
    'open_recordio_file', 'open_files', 'read_file', 'shuffle', 'batch',
    'double_buffer', 'random_data_generator', 'py_reader', 'Preprocessor',
    'load'
Y
Yu Yang 已提交
29
]
Y
Yu Yang 已提交
30 31 32 33 34 35 36 37 38 39


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
40
    **Data Layer**
Y
Yu Yang 已提交
41

K
kavyasrinet 已提交
42
    This function takes in the input and based on whether data has
C
caoying03 已提交
43
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
44
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
45
    following operators in the graph.
Y
Yu Yang 已提交
46 47 48 49

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
       append_batch_size(bool): Whether or not to append the data as a batch.
       dtype(int|float): The type of data : float32, float_16, int etc
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
    for i in xrange(len(shape)):
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
79
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
80 81 82 83 84
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
85 86
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
87
    return data_var
T
typhoonzero 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
    ListenAndServ class.

    ListenAndServ class is used to wrap listen_and_serv op to create a server
    which can receive variables from clients and run a block.
    """

Y
Yancey1989 已提交
119
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
120
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
121
        self.inputs = inputs
T
typhoonzero 已提交
122 123 124
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
125 126
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
127
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
141 142 143 144 145 146 147 148
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
149 150
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
151 152 153

        return params, grads

T
typhoonzero 已提交
154 155 156 157 158 159 160
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
161 162 163 164
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
T
typhoonzero 已提交
165
        empty_block = Program().global_block()
T
typhoonzero 已提交
166 167

        parent_block.append_op(
168
            type='listen_and_serv',
Y
Yancey1989 已提交
169
            inputs={"X": self.inputs},
T
typhoonzero 已提交
170 171 172 173
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
T
typhoonzero 已提交
174
                'OptimizeBlock': current_block,
175 176
                'PrefetchBlock': empty_block,
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
177
                'grad_to_block_id': [""]
T
typhoonzero 已提交
178 179 180
            })


T
typhoonzero 已提交
181
def Send(endpoints, send_vars, get_vars=None):
T
typhoonzero 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
    """
    Send layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)

    epmap = endpoints.split(",")
T
typhoonzero 已提交
197
    endpoints = list(set(epmap))
T
typhoonzero 已提交
198 199

    helper = LayerHelper("Send", **locals())
T
typhoonzero 已提交
200 201 202 203 204
    if not get_vars:
        get_vars = []
        for s in send_vars:
            v = helper.create_tmp_variable(dtype=s.dtype, stop_gradient=True)
            get_vars.append(v)
Y
Yancey1989 已提交
205
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
206

T
typhoonzero 已提交
207 208 209
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
Y
Yancey1989 已提交
210 211 212 213 214 215 216
        outputs={"Out": get_vars},
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })

T
typhoonzero 已提交
217
    return get_vars
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245


def Recv(endpoints, get_vars):
    """
    Recv layer

    Args:
        endpoints: comma seperated IP:PORT pairs in the order
                   of send_vars to send
        send_vars: vars to send
        get_vars: vars to get from server after send completes.

    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
    """
    assert (type(send_vars) == list)
    assert (type(get_vars) == list)

    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
        inputs={"X": get_vars},
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
Yu Yang 已提交
246 247


Y
Refine  
Yu Yang 已提交
248 249 250 251 252 253 254 255 256 257
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
258 259
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
260 261 262
    return reader


Y
Yu Yang 已提交
263 264 265 266 267
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
    new_var.persistable = True
F
fengjiayi 已提交
268 269 270 271
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
288
    new_op = block.append_op(
F
fengjiayi 已提交
289 290 291
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
292
        attrs=op.all_attrs())
F
fengjiayi 已提交
293
    return new_op
Y
Yu Yang 已提交
294 295


F
fengjiayi 已提交
296 297 298 299 300
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
F
fengjiayi 已提交
301
                       for_parallel=True):
F
fengjiayi 已提交
302 303 304 305 306 307 308 309 310 311 312
    """
    Open a RecordIO file

    This layer takes a RecordIO file to read from and returns a Reader Variable.
    Via the Reader Variable, we can get data from the given RecordIO file.

    Args:
       filename(str): The RecordIO file's name.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
F
fengjiayi 已提交
313
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable via which we can get RecordIO file data.

    Examples:
       .. code-block:: python

         reader = fluid.layers.io.open_recordio_file(
                                          filename='./data.recordio',
                                          shapes=[(3,224,224), (1)],
                                          lod_levels=[0, 0],
                                          dtypes=['float32', 'int64'])

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
330
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
331
    """
Y
Yu Yang 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
F
fengjiayi 已提交
356 357
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
358 359 360 361 362

    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)

    if for_parallel:
J
JiayiFeng 已提交
363
        main_prog_var = parallel(reader=main_prog_var)
F
fengjiayi 已提交
364

F
fengjiayi 已提交
365
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
366 367


F
fengjiayi 已提交
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
    Instead of opening a file and reading data from it, this 
    Reader Variable generates float uniform random data by itself. 
    It can be used as a dummy reader to test a network without 
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:
       .. code-block:: python

         reader = fluid.layers.io.random_data_generator(
                                          low=0.0,
                                          high=1.0,
                                          shapes=[(3,224,224), (1)],
                                          lod_levels=[0, 0])

         # Via the reader, we can use 'read_file' layer to get data:
         image, label = fluid.layers.io.read_file(reader)
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    if for_parallel:
        main_prog_var = parallel(reader=main_prog_var)

    return monkey_patch_reader_methods(main_prog_var)


S
sneaxiy 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
def py_reader(capacity, shapes, lod_levels, dtypes, for_parallel=True):
    """
    Create a reader and blocking queue for data feeding in Python

    This layer returns a Reader Variable and a BlockingQueue.
	The BlockingQueue provides `push()` method to push a 
	`LoDTensorArray` object into the queue in Python side. In C++
	side, the Reader Variable would invoke `pop()` method of the
	queue to retrieve the feeding data. The process of feeding data
	in Python side and fetching data in C++ side can run in parallel.
	The BlockingQueue should be closed using `close()` method when
	unused.

    Args:
       capacity(int): The maximum capacity of the BlockingQueue.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
	   dtypes(list): List of strs which declaring data type.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get feeding data.
	   BlockingQueue: A blocking queue for data feeding.

    Examples:

        .. code-block:: python

            reader, queue = fluid.layers.py_reader(
                                             capacity=10,
                                             shapes=[[-1,3,224,224], [-1,1]],
                                             lod_levels=[0, 0],
                                             dtypes=['float32', 'int64'])
            # Via the reader, we can use 'read_file' layer to get data:
            image, label = fluid.layers.read_file(reader)
            # Via the blocking queue, we can feed data using threads
            def feed_data(queue, feed_images, feed_labels):
                for feed_image, feed_label in zip(feed_images, feed_labels):
                    data = core.LoDTensorArray()
                    data.append(feed_image)
                    data.append(feed_label)
                    queue.push(data)
            
            thread = threading.Thread(target=feed_data, args=(queue, feed_images, feed_labels))
    """
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    queue_name = unique_name('lod_tensor_blocking_queue')
    var = global_scope().var(queue_name)
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, shapes)

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=unique_name('create_py_reader'))
    startup_blk.append_op(
        type='create_py_reader',
        inputs={'blocking_queue': queue_name},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    if for_parallel:
        main_prog_var = parallel(reader=main_prog_var)

    return monkey_patch_reader_methods(main_prog_var), feed_queue


517 518 519 520
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yi.wu 已提交
521
               thread_num=1,
F
fengjiayi 已提交
522 523
               buffer_size=None,
               pass_num=1,
F
fengjiayi 已提交
524
               for_parallel=True):
F
fengjiayi 已提交
525 526 527
    """
    Open files

F
fengjiayi 已提交
528 529 530
    This layer takes a list of files to read from and returns a Reader Variable. 
    Via the Reader Variable, we can get data from given files. All files must 
    have name suffixs to indicate their formats, e.g., '*.recordio'. 
F
fengjiayi 已提交
531 532 533 534 535 536 537 538

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
       thread_num(int): The maximal concurrent prefetch thread number.
       buffer_size(int): The size of prefetch buffer.
F
fengjiayi 已提交
539
       pass_num(int): Number of passes to run.
F
fengjiayi 已提交
540 541
       for_parallel(Bool): Set it as True if you are going to run 
            subsequent operators in parallel.
F
fengjiayi 已提交
542 543 544 545 546 547 548

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

F
fengjiayi 已提交
549
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
550
                                                     './data2.recordio'],
F
fengjiayi 已提交
551 552 553 554 555
                                             shapes=[(3,224,224), (1)],
                                             lod_levels=[0, 0],
                                             dtypes=['float32', 'int64'],
                                             thread_num=2,
                                             buffer_size=2)
F
fengjiayi 已提交
556 557

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
558
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
559
    """
560 561
    if buffer_size is None:
        buffer_size = thread_num
F
fengjiayi 已提交
562 563
    if isinstance(filenames, basestring):
        filenames = [filenames]
F
fengjiayi 已提交
564 565 566 567 568 569 570 571
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
572
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
573
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
574
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
F
fengjiayi 已提交
575 576
    startup_blk.append_op(
        type='open_files',
F
fengjiayi 已提交
577
        outputs={'Out': [startup_reader]},
F
fengjiayi 已提交
578 579 580 581
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks,
F
fengjiayi 已提交
582
            'file_names': filenames,
583 584
            'thread_num': thread_num,
            'buffer_size': buffer_size
F
fengjiayi 已提交
585 586
        })

F
fengjiayi 已提交
587 588 589 590 591 592 593
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
594

F
fengjiayi 已提交
595
    if for_parallel:
J
JiayiFeng 已提交
596
        main_prog_reader = parallel(reader=main_prog_reader)
F
fengjiayi 已提交
597

F
fengjiayi 已提交
598 599 600
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
601
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
602 603 604
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
605
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
606 607 608 609 610
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
611 612 613 614
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
615 616


617 618
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
619 620 621 622 623 624 625 626 627 628
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
629
def shuffle(reader, buffer_size):
630 631
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
632 633


J
JiayiFeng 已提交
634 635 636 637 638
def batch(reader, batch_size):
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


639
def double_buffer(reader, place=None, name=None):
Y
Yu Yang 已提交
640 641 642
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
643 644
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
645 646


F
fengjiayi 已提交
647
def multi_pass(reader, pass_num):
648 649
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
650 651


J
JiayiFeng 已提交
652
def parallel(reader):
J
JiayiFeng 已提交
653 654
    return __create_shared_decorated_reader__('create_threaded_reader', reader,
                                              {})
F
fengjiayi 已提交
655 656


Y
Yu Yang 已提交
657 658 659 660 661
def read_file(file_obj):
    helper = LayerHelper('read_file')
    out = [
        helper.create_tmp_variable(
            stop_gradient=True, dtype='float32')
Y
Yu Yang 已提交
662
        for _ in range(len(file_obj.desc.shapes()))
Y
Yu Yang 已提交
663 664 665 666 667 668 669
    ]
    helper.append_op(
        type='read', inputs={'Reader': [file_obj]}, outputs={'Out': out})
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714


class Preprocessor(object):
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

    def is_completed(self):
        return self.sub_block and self.source_var_names and self.sink_var_names

    @contextlib.contextmanager
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
        self.sub_block = self.main_prog.create_block()
        yield
        self.main_prog.rollback()
        self.status = Preprocessor.AFTER_SUB_BLOCK
        if not self.is_completed():
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
715 716 717 718
        self.source_var_names = [
            unique_name("preprocessor_source")
            for _ in xrange(len(source_shapes))
        ]
F
fengjiayi 已提交
719
        source_vars = []
F
fengjiayi 已提交
720 721 722
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
723
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
724
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
    helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)