transforms.py 44.9 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

import math
import sys
import random

import numpy as np
import numbers
import types
import collections
import warnings
import traceback

L
LielinJiang 已提交
28
from paddle.utils import try_import
L
LielinJiang 已提交
29 30 31 32 33 34 35 36 37
from . import functional as F

if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable

38
__all__ = []
L
LielinJiang 已提交
39 40


41 42 43 44 45
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif F._is_numpy_image(img):
        return img.shape[:2][::-1]
46 47
    elif F._is_tensor_image(img):
        return img.shape[1:][::-1]  # chw
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


def _check_input(value,
                 name,
                 center=1,
                 bound=(0, float('inf')),
                 clip_first_on_zero=True):
    if isinstance(value, numbers.Number):
        if value < 0:
            raise ValueError(
                "If {} is a single number, it must be non negative.".format(
                    name))
        value = [center - value, center + value]
        if clip_first_on_zero:
            value[0] = max(value[0], 0)
    elif isinstance(value, (tuple, list)) and len(value) == 2:
        if not bound[0] <= value[0] <= value[1] <= bound[1]:
            raise ValueError("{} values should be between {}".format(name,
                                                                     bound))
    else:
        raise TypeError(
            "{} should be a single number or a list/tuple with lenght 2.".
            format(name))

    if value[0] == value[1] == center:
        value = None
    return value


L
LielinJiang 已提交
79 80 81 82 83 84
class Compose(object):
    """
    Composes several transforms together use for composing list of transforms
    together for a dataset transform.

    Args:
85
        transforms (list|tuple): List/Tuple of transforms to compose.
L
LielinJiang 已提交
86 87 88 89 90 91 92 93 94

    Returns:
        A compose object which is callable, __call__ for this Compose
        object will call each given :attr:`transforms` sequencely.

    Examples:
    
        .. code-block:: python

95 96
            from paddle.vision.datasets import Flowers
            from paddle.vision.transforms import Compose, ColorJitter, Resize
L
LielinJiang 已提交
97 98 99 100 101 102

            transform = Compose([ColorJitter(), Resize(size=608)])
            flowers = Flowers(mode='test', transform=transform)

            for i in range(10):
                sample = flowers[i]
103
                print(sample[0].size, sample[1])
L
LielinJiang 已提交
104 105 106 107 108 109

    """

    def __init__(self, transforms):
        self.transforms = transforms

110
    def __call__(self, data):
L
LielinJiang 已提交
111 112
        for f in self.transforms:
            try:
113
                data = f(data)
L
LielinJiang 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
            except Exception as e:
                stack_info = traceback.format_exc()
                print("fail to perform transform [{}] with error: "
                      "{} and stack:\n{}".format(f, e, str(stack_info)))
                raise e
        return data

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


130 131 132
class BaseTransform(object):
    """
    Base class of all transforms used in computer vision.
L
LielinJiang 已提交
133

134 135 136 137 138 139 140 141 142
    calling logic: 

        if keys is None:
            _get_params -> _apply_image()
        else:
            _get_params -> _apply_*() for * in keys 

    If you want to implement a self-defined transform method for image,
    rewrite _apply_* method in subclass.
L
LielinJiang 已提交
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    Args:
        keys (list[str]|tuple[str], optional): Input type. Input is a tuple contains different structures,
            key is used to specify the type of input. For example, if your input
            is image type, then the key can be None or ("image"). if your input
            is (image, image) type, then the keys should be ("image", "image"). 
            if your input is (image, boxes), then the keys should be ("image", "boxes").

            Current available strings & data type are describe below:

            - "image": input image, with shape of (H, W, C) 
            - "coords": coordinates, with shape of (N, 2) 
            - "boxes": bounding boxes, with shape of (N, 4), "xyxy" format, 
            
                       the 1st "xy" represents top left point of a box, 
                       the 2nd "xy" represents right bottom point.

            - "mask": map used for segmentation, with shape of (H, W, 1)
            
            You can also customize your data types only if you implement the corresponding
            _apply_*() methods, otherwise ``NotImplementedError`` will be raised.
    
L
LielinJiang 已提交
165 166 167 168 169
    Examples:
    
        .. code-block:: python

            import numpy as np
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
            from PIL import Image
            import paddle.vision.transforms.functional as F
            from paddle.vision.transforms import BaseTransform

            def _get_image_size(img):
                if F._is_pil_image(img):
                    return img.size
                elif F._is_numpy_image(img):
                    return img.shape[:2][::-1]
                else:
                    raise TypeError("Unexpected type {}".format(type(img)))

            class CustomRandomFlip(BaseTransform):
                def __init__(self, prob=0.5, keys=None):
                    super(CustomRandomFlip, self).__init__(keys)
                    self.prob = prob

                def _get_params(self, inputs):
                    image = inputs[self.keys.index('image')]
                    params = {}
                    params['flip'] = np.random.random() < self.prob
                    params['size'] = _get_image_size(image)
                    return params

                def _apply_image(self, image):
                    if self.params['flip']:
                        return F.hflip(image)
                    return image

                # if you only want to transform image, do not need to rewrite this function
                def _apply_coords(self, coords):
                    if self.params['flip']:
                        w = self.params['size'][0]
                        coords[:, 0] = w - coords[:, 0]
                    return coords

                # if you only want to transform image, do not need to rewrite this function
                def _apply_boxes(self, boxes):
                    idxs = np.array([(0, 1), (2, 1), (0, 3), (2, 3)]).flatten()
                    coords = np.asarray(boxes).reshape(-1, 4)[:, idxs].reshape(-1, 2)
                    coords = self._apply_coords(coords).reshape((-1, 4, 2))
                    minxy = coords.min(axis=1)
                    maxxy = coords.max(axis=1)
                    trans_boxes = np.concatenate((minxy, maxxy), axis=1)
                    return trans_boxes
                    
                # if you only want to transform image, do not need to rewrite this function
                def _apply_mask(self, mask):
                    if self.params['flip']:
                        return F.hflip(mask)
                    return mask

            # create fake inputs
            fake_img = Image.fromarray((np.random.rand(400, 500, 3) * 255.).astype('uint8'))
            fake_boxes = np.array([[2, 3, 200, 300], [50, 60, 80, 100]])
            fake_mask = fake_img.convert('L')

            # only transform for image:
            flip_transform = CustomRandomFlip(1.0)
            converted_img = flip_transform(fake_img)

            # transform for image, boxes and mask
            flip_transform = CustomRandomFlip(1.0, keys=('image', 'boxes', 'mask'))
            (converted_img, converted_boxes, converted_mask) = flip_transform((fake_img, fake_boxes, fake_mask))
            print('converted boxes', converted_boxes)
L
LielinJiang 已提交
235 236 237

    """

238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
    def __init__(self, keys=None):
        if keys is None:
            keys = ("image", )
        elif not isinstance(keys, Sequence):
            raise ValueError(
                "keys should be a sequence, but got keys={}".format(keys))
        for k in keys:
            if self._get_apply(k) is None:
                raise NotImplementedError(
                    "{} is unsupported data structure".format(k))
        self.keys = keys

        # storage some params get from function get_params()
        self.params = None

    def _get_params(self, inputs):
        pass

    def __call__(self, inputs):
        """Apply transform on single input data"""
        if not isinstance(inputs, tuple):
            inputs = (inputs, )

        self.params = self._get_params(inputs)

        outputs = []
        for i in range(min(len(inputs), len(self.keys))):
            apply_func = self._get_apply(self.keys[i])
            if apply_func is None:
                outputs.append(inputs[i])
            else:
                outputs.append(apply_func(inputs[i]))
        if len(inputs) > len(self.keys):
271
            outputs.extend(inputs[len(self.keys):])
272 273 274 275 276 277

        if len(outputs) == 1:
            outputs = outputs[0]
        else:
            outputs = tuple(outputs)
        return outputs
L
LielinJiang 已提交
278

279 280
    def _get_apply(self, key):
        return getattr(self, "_apply_{}".format(key), None)
L
LielinJiang 已提交
281

282 283
    def _apply_image(self, image):
        raise NotImplementedError
L
LielinJiang 已提交
284

285 286
    def _apply_boxes(self, boxes):
        raise NotImplementedError
L
LielinJiang 已提交
287

288 289
    def _apply_mask(self, mask):
        raise NotImplementedError
L
LielinJiang 已提交
290

291 292 293 294

class ToTensor(BaseTransform):
    """Convert a ``PIL.Image`` or ``numpy.ndarray`` to ``paddle.Tensor``.

L
LielinJiang 已提交
295 296 297 298 299 300 301 302 303 304
    Converts a PIL.Image or numpy.ndarray (H x W x C) to a paddle.Tensor of shape (C x H x W).

    If input is a grayscale image (H x W), it will be converted to a image of shape (H x W x 1). 
    And the shape of output tensor will be (1 x H x W).

    If you want to keep the shape of output tensor as (H x W x C), you can set data_format = ``HWC`` .

    Converts a PIL.Image or numpy.ndarray in the range [0, 255] to a paddle.Tensor in the 
    range [0.0, 1.0] if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, 
    RGBA, CMYK, 1) or if the numpy.ndarray has dtype = np.uint8. 
305 306 307 308

    In the other cases, tensors are returned without scaling.

    Args:
L
LielinJiang 已提交
309
        data_format (str, optional): Data format of output tensor, should be 'HWC' or 
310 311
            'CHW'. Default: 'CHW'.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
312 313 314 315 316 317 318 319
    
    Shape:
        - img(PIL.Image|np.ndarray): The input image with shape (H x W x C).
        - output(np.ndarray): A tensor with shape (C x H x W) or (H x W x C) according option data_format.

    Returns:
        A callable object of ToTensor.

320 321 322 323 324 325 326 327 328 329
    Examples:
    
        .. code-block:: python

            import numpy as np
            from PIL import Image

            import paddle.vision.transforms as T
            import paddle.vision.transforms.functional as F

L
Liyulingyue 已提交
330
            fake_img = Image.fromarray((np.random.rand(4, 5, 3) * 255.).astype(np.uint8))
331 332 333 334

            transform = T.ToTensor()

            tensor = transform(fake_img)
L
Liyulingyue 已提交
335 336 337 338 339 340
            
            print(tensor.shape)
            # [3, 4, 5]
    
            print(tensor.dtype)
            # paddle.float32
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
    """

    def __init__(self, data_format='CHW', keys=None):
        super(ToTensor, self).__init__(keys)
        self.data_format = data_format

    def _apply_image(self, img):
        """
        Args:
            img (PIL.Image|np.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(img, self.data_format)


class Resize(BaseTransform):
L
LielinJiang 已提交
359 360 361 362 363 364 365 366
    """Resize the input Image to the given size.

    Args:
        size (int|list|tuple): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. 
            when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
382

383 384 385 386 387 388 389
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A resized image.

    Returns:
        A callable object of Resize.

L
LielinJiang 已提交
390 391 392 393 394
    Examples:
    
        .. code-block:: python

            import numpy as np
395
            from PIL import Image
396
            from paddle.vision.transforms import Resize
L
LielinJiang 已提交
397 398 399

            transform = Resize(size=224)

400
            fake_img = Image.fromarray((np.random.rand(100, 120, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
401 402

            fake_img = transform(fake_img)
403
            print(fake_img.size)
L
LielinJiang 已提交
404 405
    """

406 407
    def __init__(self, size, interpolation='bilinear', keys=None):
        super(Resize, self).__init__(keys)
L
LielinJiang 已提交
408 409 410 411 412
        assert isinstance(size, int) or (isinstance(size, Iterable) and
                                         len(size) == 2)
        self.size = size
        self.interpolation = interpolation

413
    def _apply_image(self, img):
L
LielinJiang 已提交
414 415 416
        return F.resize(img, self.size, self.interpolation)


417
class RandomResizedCrop(BaseTransform):
L
LielinJiang 已提交
418 419 420 421 422 423
    """Crop the input data to random size and aspect ratio.
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made.
    After applying crop transfrom, the input data will be resized to given size.

    Args:
424
        size (int|list|tuple): Target size of output image, with (height, width) shape.
425 426
        scale (list|tuple): Scale range of the cropped image before resizing, relatively to the origin 
            image. Default: (0.08, 1.0)
L
LielinJiang 已提交
427
        ratio (list|tuple): Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33)
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
        interpolation (int|str, optional): Interpolation method. Default: 'bilinear'. when use pil backend, 
            support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC, 
            - "box": Image.BOX, 
            - "lanczos": Image.LANCZOS, 
            - "hamming": Image.HAMMING
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "area": cv2.INTER_AREA, 
            - "bicubic": cv2.INTER_CUBIC, 
            - "lanczos": cv2.INTER_LANCZOS4
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
443

444 445 446 447 448 449 450
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of RandomResizedCrop.

L
LielinJiang 已提交
451 452 453 454 455
    Examples:
    
        .. code-block:: python

            import numpy as np
456
            from PIL import Image
457
            from paddle.vision.transforms import RandomResizedCrop
L
LielinJiang 已提交
458 459 460

            transform = RandomResizedCrop(224)

461
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
462 463

            fake_img = transform(fake_img)
464 465
            print(fake_img.size)

L
LielinJiang 已提交
466 467 468
    """

    def __init__(self,
469
                 size,
L
LielinJiang 已提交
470 471
                 scale=(0.08, 1.0),
                 ratio=(3. / 4, 4. / 3),
472 473 474 475 476
                 interpolation='bilinear',
                 keys=None):
        super(RandomResizedCrop, self).__init__(keys)
        if isinstance(size, int):
            self.size = (size, size)
L
LielinJiang 已提交
477
        else:
478
            self.size = size
L
LielinJiang 已提交
479 480 481 482 483 484
        assert (scale[0] <= scale[1]), "scale should be of kind (min, max)"
        assert (ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
        self.scale = scale
        self.ratio = ratio
        self.interpolation = interpolation

485 486
    def _get_param(self, image, attempts=10):
        width, height = _get_image_size(image)
L
LielinJiang 已提交
487 488 489 490 491 492 493 494 495 496 497
        area = height * width

        for _ in range(attempts):
            target_area = np.random.uniform(*self.scale) * area
            log_ratio = tuple(math.log(x) for x in self.ratio)
            aspect_ratio = math.exp(np.random.uniform(*log_ratio))

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if 0 < w <= width and 0 < h <= height:
498 499 500
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
                return i, j, h, w
L
LielinJiang 已提交
501 502 503 504 505 506 507 508 509

        # Fallback to central crop
        in_ratio = float(width) / float(height)
        if in_ratio < min(self.ratio):
            w = width
            h = int(round(w / min(self.ratio)))
        elif in_ratio > max(self.ratio):
            h = height
            w = int(round(h * max(self.ratio)))
510 511
        else:
            # return whole image
L
LielinJiang 已提交
512 513
            w = width
            h = height
514 515 516
        i = (height - h) // 2
        j = (width - w) // 2
        return i, j, h, w
L
LielinJiang 已提交
517

518 519
    def _apply_image(self, img):
        i, j, h, w = self._get_param(img)
L
LielinJiang 已提交
520

521
        cropped_img = F.crop(img, i, j, h, w)
L
LielinJiang 已提交
522 523 524
        return F.resize(cropped_img, self.size, self.interpolation)


525
class CenterCrop(BaseTransform):
L
LielinJiang 已提交
526 527 528
    """Crops the given the input data at the center.

    Args:
529 530 531
        size (int|list|tuple): Target size of output image, with (height, width) shape.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.

532 533 534 535 536 537 538
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A cropped image.

    Returns:
        A callable object of CenterCrop.

L
LielinJiang 已提交
539 540 541 542 543
    Examples:
    
        .. code-block:: python

            import numpy as np
544
            from PIL import Image
545
            from paddle.vision.transforms import CenterCrop
L
LielinJiang 已提交
546 547 548

            transform = CenterCrop(224)

549
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
550 551

            fake_img = transform(fake_img)
552
            print(fake_img.size)
L
LielinJiang 已提交
553 554
    """

555 556 557 558
    def __init__(self, size, keys=None):
        super(CenterCrop, self).__init__(keys)
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
L
LielinJiang 已提交
559
        else:
560
            self.size = size
L
LielinJiang 已提交
561

562 563
    def _apply_image(self, img):
        return F.center_crop(img, self.size)
L
LielinJiang 已提交
564 565


566
class RandomHorizontalFlip(BaseTransform):
L
LielinJiang 已提交
567 568 569
    """Horizontally flip the input data randomly with a given probability.

    Args:
B
Bin Lu 已提交
570
        prob (float, optional): Probability of the input data being flipped. Should be in [0, 1]. Default: 0.5
571
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
572

573 574 575 576 577 578 579
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A horiziotal flipped image.

    Returns:
        A callable object of RandomHorizontalFlip.

L
LielinJiang 已提交
580 581 582 583 584
    Examples:
    
        .. code-block:: python

            import numpy as np
585
            from PIL import Image
586
            from paddle.vision.transforms import RandomHorizontalFlip
L
LielinJiang 已提交
587

B
Bin Lu 已提交
588
            transform = RandomHorizontalFlip(0.5)
L
LielinJiang 已提交
589

590
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
591 592

            fake_img = transform(fake_img)
593
            print(fake_img.size)
L
LielinJiang 已提交
594 595
    """

596 597
    def __init__(self, prob=0.5, keys=None):
        super(RandomHorizontalFlip, self).__init__(keys)
I
IMMORTAL 已提交
598
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
599 600
        self.prob = prob

601 602 603
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.hflip(img)
L
LielinJiang 已提交
604 605 606
        return img


607
class RandomVerticalFlip(BaseTransform):
L
LielinJiang 已提交
608 609 610
    """Vertically flip the input data randomly with a given probability.

    Args:
611 612
        prob (float, optional): Probability of the input data being flipped. Default: 0.5
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
613

614 615 616 617 618 619 620
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A vertical flipped image.

    Returns:
        A callable object of RandomVerticalFlip.

L
LielinJiang 已提交
621 622 623 624 625
    Examples:
    
        .. code-block:: python

            import numpy as np
626
            from PIL import Image
627
            from paddle.vision.transforms import RandomVerticalFlip
L
LielinJiang 已提交
628

629
            transform = RandomVerticalFlip()
L
LielinJiang 已提交
630

631
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
632 633

            fake_img = transform(fake_img)
634 635
            print(fake_img.size)

L
LielinJiang 已提交
636 637
    """

638 639
    def __init__(self, prob=0.5, keys=None):
        super(RandomVerticalFlip, self).__init__(keys)
I
IMMORTAL 已提交
640
        assert 0 <= prob <= 1, "probability must be between 0 and 1"
L
LielinJiang 已提交
641 642
        self.prob = prob

643 644 645
    def _apply_image(self, img):
        if random.random() < self.prob:
            return F.vflip(img)
L
LielinJiang 已提交
646 647 648
        return img


649
class Normalize(BaseTransform):
L
LielinJiang 已提交
650 651 652 653 654 655
    """Normalize the input data with mean and standard deviation.
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
    this transform will normalize each channel of the input data.
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
656 657
        mean (int|float|list|tuple): Sequence of means for each channel.
        std (int|float|list|tuple): Sequence of standard deviations for each channel.
658 659 660 661
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
        to_rgb (bool, optional): Whether to convert to rgb. Default: False.
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
662 663 664 665 666 667 668 669

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A normalized array or tensor.

    Returns:
        A callable object of Normalize.

L
LielinJiang 已提交
670 671 672 673 674
    Examples:
    
        .. code-block:: python

            import numpy as np
675
            from PIL import Image
676
            from paddle.vision.transforms import Normalize
L
LielinJiang 已提交
677

678 679 680
            normalize = Normalize(mean=[127.5, 127.5, 127.5], 
                                  std=[127.5, 127.5, 127.5],
                                  data_format='HWC')
L
LielinJiang 已提交
681

682
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
683 684 685

            fake_img = normalize(fake_img)
            print(fake_img.shape)
686
            print(fake_img.max, fake_img.max)
L
LielinJiang 已提交
687 688 689
    
    """

690 691 692 693 694 695 696
    def __init__(self,
                 mean=0.0,
                 std=1.0,
                 data_format='CHW',
                 to_rgb=False,
                 keys=None):
        super(Normalize, self).__init__(keys)
L
LielinJiang 已提交
697 698 699 700
        if isinstance(mean, numbers.Number):
            mean = [mean, mean, mean]

        if isinstance(std, numbers.Number):
L
LielinJiang 已提交
701
            std = [std, std, std]
L
LielinJiang 已提交
702

703 704 705 706
        self.mean = mean
        self.std = std
        self.data_format = data_format
        self.to_rgb = to_rgb
L
LielinJiang 已提交
707

708 709 710
    def _apply_image(self, img):
        return F.normalize(img, self.mean, self.std, self.data_format,
                           self.to_rgb)
L
LielinJiang 已提交
711 712


713 714
class Transpose(BaseTransform):
    """Transpose input data to a target format.
L
LielinJiang 已提交
715 716
    For example, most transforms use HWC mode image,
    while the Neural Network might use CHW mode input tensor.
717
    output image will be an instance of numpy.ndarray. 
L
LielinJiang 已提交
718 719

    Args:
720 721
        order (list|tuple, optional): Target order of input data. Default: (2, 0, 1).
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
722 723 724 725 726 727 728 729 730
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(np.ndarray|Paddle.Tensor): A transposed array or tensor. If input 
            is a PIL.Image, output will be converted to np.ndarray automatically.

    Returns:
        A callable object of Transpose.

L
LielinJiang 已提交
731 732 733 734 735
    Examples:
    
        .. code-block:: python

            import numpy as np
736 737
            from PIL import Image
            from paddle.vision.transforms import Transpose
L
LielinJiang 已提交
738

739
            transform = Transpose()
L
LielinJiang 已提交
740

741
            fake_img = Image.fromarray((np.random.rand(300, 320, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
742 743 744 745 746 747

            fake_img = transform(fake_img)
            print(fake_img.shape)
    
    """

748 749 750 751 752
    def __init__(self, order=(2, 0, 1), keys=None):
        super(Transpose, self).__init__(keys)
        self.order = order

    def _apply_image(self, img):
753 754 755
        if F._is_tensor_image(img):
            return img.transpose(self.order)

756 757
        if F._is_pil_image(img):
            img = np.asarray(img)
L
LielinJiang 已提交
758

759 760
        if len(img.shape) == 2:
            img = img[..., np.newaxis]
761
        return img.transpose(self.order)
L
LielinJiang 已提交
762 763


764
class BrightnessTransform(BaseTransform):
L
LielinJiang 已提交
765 766 767 768 769
    """Adjust brightness of the image.

    Args:
        value (float): How much to adjust the brightness. Can be any
            non negative number. 0 gives the original image
770
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
771

772 773 774 775 776 777 778
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in brghtness.

    Returns:
        A callable object of BrightnessTransform.

L
LielinJiang 已提交
779 780 781 782 783
    Examples:
    
        .. code-block:: python

            import numpy as np
784
            from PIL import Image
785
            from paddle.vision.transforms import BrightnessTransform
L
LielinJiang 已提交
786 787 788

            transform = BrightnessTransform(0.4)

789
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
790 791

            fake_img = transform(fake_img)
792
            
L
LielinJiang 已提交
793 794
    """

795 796 797
    def __init__(self, value, keys=None):
        super(BrightnessTransform, self).__init__(keys)
        self.value = _check_input(value, 'brightness')
L
LielinJiang 已提交
798

799 800
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
801 802
            return img

803 804
        brightness_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_brightness(img, brightness_factor)
L
LielinJiang 已提交
805 806


807
class ContrastTransform(BaseTransform):
L
LielinJiang 已提交
808 809 810 811 812
    """Adjust contrast of the image.

    Args:
        value (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives the original image
813
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
814

815 816 817 818 819 820 821
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in contrast.

    Returns:
        A callable object of ContrastTransform.

L
LielinJiang 已提交
822 823 824 825 826
    Examples:
    
        .. code-block:: python

            import numpy as np
827
            from PIL import Image
828
            from paddle.vision.transforms import ContrastTransform
L
LielinJiang 已提交
829 830 831

            transform = ContrastTransform(0.4)

832
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
833 834

            fake_img = transform(fake_img)
835

L
LielinJiang 已提交
836 837
    """

838 839
    def __init__(self, value, keys=None):
        super(ContrastTransform, self).__init__(keys)
L
LielinJiang 已提交
840 841
        if value < 0:
            raise ValueError("contrast value should be non-negative")
842
        self.value = _check_input(value, 'contrast')
L
LielinJiang 已提交
843

844 845
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
846 847
            return img

848 849
        contrast_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_contrast(img, contrast_factor)
L
LielinJiang 已提交
850 851


852
class SaturationTransform(BaseTransform):
L
LielinJiang 已提交
853 854 855 856 857
    """Adjust saturation of the image.

    Args:
        value (float): How much to adjust the saturation. Can be any
            non negative number. 0 gives the original image
858
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
859

860 861 862 863 864 865 866
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in saturation.

    Returns:
        A callable object of SaturationTransform.

L
LielinJiang 已提交
867 868 869 870 871
    Examples:
    
        .. code-block:: python

            import numpy as np
872
            from PIL import Image
873
            from paddle.vision.transforms import SaturationTransform
L
LielinJiang 已提交
874 875 876

            transform = SaturationTransform(0.4)

877
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
878 879
        
            fake_img = transform(fake_img)
880

L
LielinJiang 已提交
881 882
    """

883 884 885
    def __init__(self, value, keys=None):
        super(SaturationTransform, self).__init__(keys)
        self.value = _check_input(value, 'saturation')
L
LielinJiang 已提交
886

887 888
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
889 890
            return img

891 892
        saturation_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_saturation(img, saturation_factor)
L
LielinJiang 已提交
893

L
LielinJiang 已提交
894

895
class HueTransform(BaseTransform):
L
LielinJiang 已提交
896 897 898 899 900
    """Adjust hue of the image.

    Args:
        value (float): How much to adjust the hue. Can be any number
            between 0 and 0.5, 0 gives the original image
901
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
902

903 904 905 906 907 908 909
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): An image with a transform in hue.

    Returns:
        A callable object of HueTransform.

L
LielinJiang 已提交
910 911 912 913 914
    Examples:
    
        .. code-block:: python

            import numpy as np
915
            from PIL import Image
916
            from paddle.vision.transforms import HueTransform
L
LielinJiang 已提交
917 918 919

            transform = HueTransform(0.4)

920
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
921 922

            fake_img = transform(fake_img)
923

L
LielinJiang 已提交
924 925
    """

926 927 928 929
    def __init__(self, value, keys=None):
        super(HueTransform, self).__init__(keys)
        self.value = _check_input(
            value, 'hue', center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
L
LielinJiang 已提交
930

931 932
    def _apply_image(self, img):
        if self.value is None:
L
LielinJiang 已提交
933 934
            return img

935 936
        hue_factor = random.uniform(self.value[0], self.value[1])
        return F.adjust_hue(img, hue_factor)
L
LielinJiang 已提交
937 938


939
class ColorJitter(BaseTransform):
L
LielinJiang 已提交
940 941 942
    """Randomly change the brightness, contrast, saturation and hue of an image.

    Args:
943
        brightness (float): How much to jitter brightness.
L
LielinJiang 已提交
944
            Chosen uniformly from [max(0, 1 - brightness), 1 + brightness]. Should be non negative numbers.
945
        contrast (float): How much to jitter contrast.
L
LielinJiang 已提交
946
            Chosen uniformly from [max(0, 1 - contrast), 1 + contrast]. Should be non negative numbers.
947
        saturation (float): How much to jitter saturation.
L
LielinJiang 已提交
948
            Chosen uniformly from [max(0, 1 - saturation), 1 + saturation]. Should be non negative numbers.
949
        hue (float): How much to jitter hue.
L
LielinJiang 已提交
950
            Chosen uniformly from [-hue, hue]. Should have 0<= hue <= 0.5.
951
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
L
LielinJiang 已提交
952

953 954 955 956 957 958 959
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A color jittered image.

    Returns:
        A callable object of ColorJitter.

L
LielinJiang 已提交
960 961 962 963 964
    Examples:
    
        .. code-block:: python

            import numpy as np
965
            from PIL import Image
966
            from paddle.vision.transforms import ColorJitter
L
LielinJiang 已提交
967

968
            transform = ColorJitter(0.4, 0.4, 0.4, 0.4)
L
LielinJiang 已提交
969

970
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
971 972

            fake_img = transform(fake_img)
973

L
LielinJiang 已提交
974 975
    """

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0,
                 keys=None):
        super(ColorJitter, self).__init__(keys)
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def _get_param(self, brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
L
LielinJiang 已提交
993
        transforms = []
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

        if brightness is not None:
            transforms.append(BrightnessTransform(brightness, self.keys))

        if contrast is not None:
            transforms.append(ContrastTransform(contrast, self.keys))

        if saturation is not None:
            transforms.append(SaturationTransform(saturation, self.keys))

        if hue is not None:
            transforms.append(HueTransform(hue, self.keys))
L
LielinJiang 已提交
1006 1007

        random.shuffle(transforms)
1008
        transform = Compose(transforms)
L
LielinJiang 已提交
1009

1010
        return transform
L
LielinJiang 已提交
1011

1012 1013 1014 1015
    def _apply_image(self, img):
        """
        Args:
            img (PIL Image): Input image.
L
LielinJiang 已提交
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025
        Returns:
            PIL Image: Color jittered image.
        """
        transform = self._get_param(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)


class RandomCrop(BaseTransform):
L
LielinJiang 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    """Crops the given CV Image at a random location.

    Args:
        size (sequence|int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int|sequence|optional): Optional padding on each border
            of the image. If a sequence of length 4 is provided, it is used to pad left, 
            top, right, bottom borders respectively. Default: 0.
        pad_if_needed (boolean|optional): It will pad the image if smaller than the
            desired size to avoid raising an exception. Default: False.
1037
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1038 1039 1040 1041 1042 1043 1044 1045
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A random cropped image.

    Returns:
        A callable object of RandomCrop.

L
LielinJiang 已提交
1046 1047 1048 1049 1050
    Examples:
    
        .. code-block:: python

            import numpy as np
1051
            from PIL import Image
1052
            from paddle.vision.transforms import RandomCrop
L
LielinJiang 已提交
1053 1054 1055

            transform = RandomCrop(224)

1056
            fake_img = Image.fromarray((np.random.rand(324, 300, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1057 1058

            fake_img = transform(fake_img)
1059
            print(fake_img.size)
L
LielinJiang 已提交
1060 1061
    """

1062 1063 1064 1065 1066 1067 1068 1069
    def __init__(self,
                 size,
                 padding=None,
                 pad_if_needed=False,
                 fill=0,
                 padding_mode='constant',
                 keys=None):
        super(RandomCrop, self).__init__(keys)
L
LielinJiang 已提交
1070 1071 1072 1073 1074 1075
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
        self.pad_if_needed = pad_if_needed
1076 1077
        self.fill = fill
        self.padding_mode = padding_mode
L
LielinJiang 已提交
1078

1079
    def _get_param(self, img, output_size):
L
LielinJiang 已提交
1080 1081 1082
        """Get parameters for ``crop`` for a random crop.

        Args:
1083
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1084 1085 1086 1087 1088
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
1089
        w, h = _get_image_size(img)
L
LielinJiang 已提交
1090 1091 1092 1093
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

1094 1095
        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
L
LielinJiang 已提交
1096 1097
        return i, j, th, tw

1098
    def _apply_image(self, img):
L
LielinJiang 已提交
1099 1100
        """
        Args:
1101
            img (PIL Image): Image to be cropped.
L
LielinJiang 已提交
1102

1103 1104
        Returns:
            PIL Image: Cropped image.
L
LielinJiang 已提交
1105
        """
1106 1107 1108 1109
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)

        w, h = _get_image_size(img)
L
LielinJiang 已提交
1110 1111

        # pad the width if needed
1112 1113 1114
        if self.pad_if_needed and w < self.size[1]:
            img = F.pad(img, (self.size[1] - w, 0), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1115
        # pad the height if needed
1116 1117 1118
        if self.pad_if_needed and h < self.size[0]:
            img = F.pad(img, (0, self.size[0] - h), self.fill,
                        self.padding_mode)
L
LielinJiang 已提交
1119

1120
        i, j, h, w = self._get_param(img, self.size)
L
LielinJiang 已提交
1121

1122
        return F.crop(img, i, j, h, w)
L
LielinJiang 已提交
1123 1124


1125
class Pad(BaseTransform):
L
LielinJiang 已提交
1126 1127 1128 1129
    """Pads the given CV Image on all sides with the given "pad" value.

    Args:
        padding (int|list|tuple): Padding on each border. If a single int is provided this
1130 1131
            is used to pad all borders. If list/tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a list/tuple of length 4 is provided
L
LielinJiang 已提交
1132 1133
            this is the padding for the left, top, right and bottom borders
            respectively.
1134
        fill (int|list|tuple): Pixel fill value for constant fill. Default is 0. If a list/tuple of
L
LielinJiang 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
            ``constant`` means pads with a constant value, this value is specified with fill. 
            ``edge`` means pads with the last value at the edge of the image. 
            ``reflect`` means pads with reflection of image (without repeating the last value on the edge) 
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode 
            will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``.
            ``symmetric`` menas pads with reflection of image (repeating the last value on the edge)
            padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode 
            will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``.
1146
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1147 1148 1149 1150 1151 1152 1153 1154
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A paded image.

    Returns:
        A callable object of Pad.

L
LielinJiang 已提交
1155 1156 1157 1158 1159
    Examples:
    
        .. code-block:: python

            import numpy as np
1160
            from PIL import Image
1161
            from paddle.vision.transforms import Pad
L
LielinJiang 已提交
1162 1163 1164

            transform = Pad(2)

1165
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1166 1167

            fake_img = transform(fake_img)
1168
            print(fake_img.size)
L
LielinJiang 已提交
1169 1170
    """

1171
    def __init__(self, padding, fill=0, padding_mode='constant', keys=None):
L
LielinJiang 已提交
1172 1173 1174
        assert isinstance(padding, (numbers.Number, list, tuple))
        assert isinstance(fill, (numbers.Number, str, list, tuple))
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
1175 1176 1177 1178 1179 1180 1181

        if isinstance(padding, list):
            padding = tuple(padding)
        if isinstance(fill, list):
            fill = tuple(fill)

        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
L
LielinJiang 已提交
1182 1183 1184 1185
            raise ValueError(
                "Padding must be an int or a 2, or 4 element tuple, not a " +
                "{} element tuple".format(len(padding)))

1186
        super(Pad, self).__init__(keys)
L
LielinJiang 已提交
1187 1188 1189 1190
        self.padding = padding
        self.fill = fill
        self.padding_mode = padding_mode

1191
    def _apply_image(self, img):
L
LielinJiang 已提交
1192 1193
        """
        Args:
1194 1195
            img (PIL Image): Image to be padded.

L
LielinJiang 已提交
1196
        Returns:
1197
            PIL Image: Padded image.
L
LielinJiang 已提交
1198 1199 1200 1201
        """
        return F.pad(img, self.padding, self.fill, self.padding_mode)


1202
class RandomRotation(BaseTransform):
L
LielinJiang 已提交
1203 1204 1205 1206 1207 1208
    """Rotates the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees) clockwise order.
1209
        interpolation (str, optional): Interpolation method. If omitted, or if the 
1210 1211 1212 1213 1214 1215 1216 1217 1218
            image has only one channel, it is set to PIL.Image.NEAREST or cv2.INTER_NEAREST 
            according the backend. when use pil backend, support method are as following: 
            - "nearest": Image.NEAREST, 
            - "bilinear": Image.BILINEAR, 
            - "bicubic": Image.BICUBIC
            when use cv2 backend, support method are as following: 
            - "nearest": cv2.INTER_NEAREST, 
            - "bilinear": cv2.INTER_LINEAR, 
            - "bicubic": cv2.INTER_CUBIC
L
LielinJiang 已提交
1219 1220 1221 1222 1223 1224 1225
        expand (bool|optional): Optional expansion flag. Default: False.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple|optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
1226
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1227 1228 1229 1230 1231 1232 1233 1234
    
    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): A rotated image.

    Returns:
        A callable object of RandomRotation.

L
LielinJiang 已提交
1235 1236 1237 1238 1239
    Examples:
    
        .. code-block:: python

            import numpy as np
1240 1241
            from PIL import Image
            from paddle.vision.transforms import RandomRotation
L
LielinJiang 已提交
1242

1243
            transform = RandomRotation(90)
L
LielinJiang 已提交
1244

1245
            fake_img = Image.fromarray((np.random.rand(200, 150, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1246 1247

            fake_img = transform(fake_img)
1248
            print(fake_img.size)
L
LielinJiang 已提交
1249 1250
    """

1251 1252
    def __init__(self,
                 degrees,
1253
                 interpolation='nearest',
1254 1255 1256 1257
                 expand=False,
                 center=None,
                 fill=0,
                 keys=None):
L
LielinJiang 已提交
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError(
                    "If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError(
                    "If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

1269
        super(RandomRotation, self).__init__(keys)
1270
        self.interpolation = interpolation
L
LielinJiang 已提交
1271 1272
        self.expand = expand
        self.center = center
1273
        self.fill = fill
L
LielinJiang 已提交
1274

1275
    def _get_param(self, degrees):
L
LielinJiang 已提交
1276 1277 1278 1279
        angle = random.uniform(degrees[0], degrees[1])

        return angle

1280
    def _apply_image(self, img):
L
LielinJiang 已提交
1281
        """
1282 1283 1284
        Args:
            img (PIL.Image|np.array): Image to be rotated.

L
LielinJiang 已提交
1285
        Returns:
1286
            PIL.Image or np.array: Rotated image.
L
LielinJiang 已提交
1287 1288
        """

1289
        angle = self._get_param(self.degrees)
L
LielinJiang 已提交
1290

1291 1292
        return F.rotate(img, angle, self.interpolation, self.expand,
                        self.center, self.fill)
L
LielinJiang 已提交
1293 1294


1295
class Grayscale(BaseTransform):
L
LielinJiang 已提交
1296 1297 1298
    """Converts image to grayscale.

    Args:
1299 1300
        num_output_channels (int): (1 or 3) number of channels desired for output image
        keys (list[str]|tuple[str], optional): Same as ``BaseTransform``. Default: None.
1301 1302 1303 1304 1305 1306 1307

    Shape:
        - img(PIL.Image|np.ndarray|Paddle.Tensor): The input image with shape (H x W x C).
        - output(PIL.Image|np.ndarray|Paddle.Tensor): Grayscale version of the input image. 
            - If output_channels == 1 : returned image is single channel
            - If output_channels == 3 : returned image is 3 channel with r == g == b

L
LielinJiang 已提交
1308
    Returns:
1309
        A callable object of Grayscale.
L
LielinJiang 已提交
1310 1311 1312 1313 1314 1315

    Examples:
    
        .. code-block:: python

            import numpy as np
1316
            from PIL import Image
1317
            from paddle.vision.transforms import Grayscale
L
LielinJiang 已提交
1318 1319 1320

            transform = Grayscale()

1321
            fake_img = Image.fromarray((np.random.rand(224, 224, 3) * 255.).astype(np.uint8))
L
LielinJiang 已提交
1322 1323

            fake_img = transform(fake_img)
1324
            print(np.array(fake_img).shape)
L
LielinJiang 已提交
1325 1326
    """

1327 1328 1329
    def __init__(self, num_output_channels=1, keys=None):
        super(Grayscale, self).__init__(keys)
        self.num_output_channels = num_output_channels
L
LielinJiang 已提交
1330

1331
    def _apply_image(self, img):
L
LielinJiang 已提交
1332 1333
        """
        Args:
1334 1335
            img (PIL Image): Image to be converted to grayscale.

L
LielinJiang 已提交
1336
        Returns:
1337
            PIL Image: Randomly grayscaled image.
L
LielinJiang 已提交
1338
        """
1339
        return F.to_grayscale(img, self.num_output_channels)