kron_op.h 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"
#if __NVCC__
#include "paddle/fluid/operators/reduce_ops/cub_reduce.h"
#include "thrust/device_vector.h"
#endif

namespace paddle {
namespace operators {

// Process an element in the output, used with a parallel-for
template <typename T>
struct KronElemFunctor {
  KronElemFunctor(const T* a, const T* b, T* out, const int64_t* shape_b,
                  const int64_t* stride_a, const int64_t* stride_b,
                  const int64_t* stride_out, int ndims)
      : a_(a),
        b_(b),
        out_(out),
        shape_b_(shape_b),
        stride_a_(stride_a),
        stride_b_(stride_b),
        stride_out_(stride_out),
        ndims_(ndims) {}

  HOSTDEVICE void operator()(int64_t idx) const {
    // it computes 1 element in the output
    int64_t index = idx;
    int64_t index_a = 0;
    int64_t index_b = 0;
    for (int i = 0; i < ndims_; i++) {
      auto pos_i = index / stride_out_[i];
      index = index % stride_out_[i];
      auto pos_ai = pos_i / shape_b_[i];
      auto pos_bi = pos_i % shape_b_[i];
      index_a += stride_a_[i] * pos_ai;
      index_b += stride_b_[i] * pos_bi;
    }
    out_[idx] = a_[index_a] * b_[index_b];
  }

 private:
  const T* a_;
  const T* b_;
  T* out_;
  const int64_t* shape_b_;
  const int64_t* stride_a_;
  const int64_t* stride_b_;
  const int64_t* stride_out_;
  const int ndims_;
};

template <typename DeviceContext, typename T>
struct KronOpFunctor {
  void operator()(const DeviceContext& dev_ctx, const framework::Tensor& x,
                  const framework::Tensor& y, framework::Tensor* out) {
    int ndims = out->dims().size();
    int64_t numel = out->numel();

    const framework::DDim& dim_x = x.dims();
    const framework::DDim& dim_y = y.dims();
    const framework::DDim& dim_out = out->dims();
    const framework::DDim stride_x = framework::stride(dim_x);
    const framework::DDim stride_y = framework::stride(dim_y);
    const framework::DDim stride_out = framework::stride(dim_out);

    const int64_t *p_stride_x = nullptr, *p_stride_y = nullptr,
                  *p_stride_out = nullptr, *p_shape_y = nullptr;
#if __NVCC__
    thrust::device_vector<int64_t> d_stride_x(ndims);
    thrust::device_vector<int64_t> d_stride_y(ndims);
    thrust::device_vector<int64_t> d_stride_out(ndims);
    thrust::device_vector<int64_t> d_shape_y(ndims);
    thrust::copy(stride_x.Get(), stride_x.Get() + ndims, d_stride_x.begin());
    thrust::copy(stride_y.Get(), stride_y.Get() + ndims, d_stride_y.begin());
    thrust::copy(stride_out.Get(), stride_out.Get() + ndims,
                 d_stride_out.begin());
    thrust::copy(dim_y.Get(), dim_y.Get() + ndims, d_shape_y.begin());

    p_stride_x = thrust::raw_pointer_cast(d_stride_x.data());
    p_stride_y = thrust::raw_pointer_cast(d_stride_y.data());
    p_stride_out = thrust::raw_pointer_cast(d_stride_out.data());
    p_shape_y = thrust::raw_pointer_cast(d_shape_y.data());
#else
    p_stride_x = stride_x.Get();
    p_stride_y = stride_y.Get();
    p_stride_out = stride_out.Get();
    p_shape_y = dim_y.Get();
#endif

    platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
    KronElemFunctor<T> functor(x.data<T>(), y.data<T>(), out->data<T>(),
                               p_shape_y, p_stride_x, p_stride_y, p_stride_out,
                               ndims);
    for_range(functor);
  }
};

template <typename T>
struct KronGradElemFunctor {
  KronGradElemFunctor(const T* dout, const T* A, const T* B, T* dout_a,
                      T* dout_b, const int64_t* stride_dout,
                      const int64_t* stride_a, const int64_t* stride_b,
                      const int64_t* shape_b, const int64_t numel_a,
                      const int64_t numel_b, const int ndims)
      : dout_(dout),
        A_(A),
        B_(B),
        dout_a_(dout_a),
        dout_b_(dout_b),
        stride_dout_(stride_dout),
        stride_a_(stride_a),
        stride_b_(stride_b),
        shape_b_(shape_b),
        numel_a_(numel_a),
        numel_b_(numel_b),
        ndims_(ndims) {}

  HOSTDEVICE void operator()(int64_t idx) {
    int64_t index = idx;
    int64_t index_a = 0;
    int64_t index_b = 0;
    for (int i = 0; i < ndims_; i++) {
      auto pos_i = index / stride_dout_[i];
      index = index % stride_dout_[i];
      auto pos_ai = pos_i / shape_b_[i];
      auto pos_bi = pos_i % shape_b_[i];
      index_a += stride_a_[i] * pos_ai;
      index_b += stride_b_[i] * pos_bi;
    }

    size_t index_out_a = index_a * numel_b_ + index_b;
    size_t index_out_b = index_b * numel_a_ + index_a;

    dout_a_[index_out_a] = dout_[idx] * B_[index_b];
    dout_b_[index_out_b] = dout_[idx] * A_[index_a];
  }

 private:
  const T* dout_;
  const T* A_;
  const T* B_;
  T* dout_a_;
  T* dout_b_;
  const int64_t* stride_dout_;
  const int64_t* stride_a_;
  const int64_t* stride_b_;
  const int64_t* shape_b_;
  const int64_t numel_a_;
  const int64_t numel_b_;
  const int ndims_;
};

template <typename T>
struct IdentityFunctor {
  HOSTDEVICE explicit inline IdentityFunctor() {}

  HOSTDEVICE inline T operator()(const T& x) const { return x; }
};

template <typename DeviceContext, typename T>
struct KronGradOpFunctor {
  void operator()(const DeviceContext& dev_ctx, const framework::Tensor& dout,
                  const framework::Tensor& x, const framework::Tensor& y,
                  framework::Tensor* dx, framework::Tensor* dy) {
    int ndims = dout.dims().size();
    int64_t numel = dout.numel();
    int64_t numel_x = x.numel();
    int64_t numel_y = y.numel();

    const framework::DDim& dim_x = x.dims();
    const framework::DDim& dim_y = y.dims();
    const framework::DDim& dim_dout = dout.dims();

    const framework::DDim stride_x = framework::stride(dim_x);
    const framework::DDim stride_y = framework::stride(dim_y);
    const framework::DDim stride_dout = framework::stride(dim_dout);

    const int64_t* p_stride_x = nullptr;
    const int64_t* p_stride_y = nullptr;
    const int64_t* p_stride_dout = nullptr;
    const int64_t* p_shape_y = nullptr;
#if __NVCC__
    thrust::device_vector<int64_t> d_stride_x(ndims);
    thrust::device_vector<int64_t> d_stride_y(ndims);
    thrust::device_vector<int64_t> d_stride_dout(ndims);
    thrust::device_vector<int64_t> d_shape_y(ndims);
    thrust::copy(stride_x.Get(), stride_x.Get() + ndims, d_stride_x.begin());
    thrust::copy(stride_y.Get(), stride_y.Get() + ndims, d_stride_y.begin());
    thrust::copy(stride_dout.Get(), stride_dout.Get() + ndims,
                 d_stride_dout.begin());
    thrust::copy(dim_y.Get(), dim_y.Get() + ndims, d_shape_y.begin());

    p_stride_x = thrust::raw_pointer_cast(d_stride_x.data());
    p_stride_y = thrust::raw_pointer_cast(d_stride_y.data());
    p_stride_dout = thrust::raw_pointer_cast(d_stride_dout.data());
    p_shape_y = thrust::raw_pointer_cast(d_shape_y.data());
#else
    p_stride_x = stride_x.Get();
    p_stride_y = stride_y.Get();
    p_stride_dout = stride_dout.Get();
    p_shape_y = dim_y.Get();
#endif
    // dout_x: dout * kron(ones(X), Y) re-aranged in shape (numel_x, numel_y)
    // dout_y: dout * kron(X, ones(Y)) re-aranged in shaoe (numel_y, numel_x)
    framework::Tensor dout_x;
    dout_x.mutable_data<T>({numel_x, numel_y}, dev_ctx.GetPlace());
    framework::Tensor dout_y;
    dout_y.mutable_data<T>({numel_y, numel_x}, dev_ctx.GetPlace());

    platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
    KronGradElemFunctor<T> func(dout.data<T>(), x.data<T>(), y.data<T>(),
                                dout_x.data<T>(), dout_y.data<T>(),
                                p_stride_dout, p_stride_x, p_stride_y,
                                p_shape_y, numel_x, numel_y, ndims);
    for_range(func);

// reduce_sum along aixs 1
#if __NVCC__
    auto stream = dev_ctx.stream();  // it is a cuda device_context
    TensorReduce<T, T, cub::Sum, IdentityFunctor<T>>(
        dout_x, dx, {1}, static_cast<T>(0), cub::Sum(), IdentityFunctor<T>(),
        stream);
    TensorReduce<T, T, cub::Sum, IdentityFunctor<T>>(
        dout_y, dy, {1}, static_cast<T>(0), cub::Sum(), IdentityFunctor<T>(),
        stream);
#else
    auto eigen_dout_x = framework::EigenMatrix<T>::Reshape(dout_x, 1);
    auto eigen_dout_y = framework::EigenMatrix<T>::Reshape(dout_y, 1);
    auto eigen_vec_dx = framework::EigenVector<T>::Flatten(*dx);
    auto eigen_vec_dy = framework::EigenVector<T>::Flatten(*dy);
    auto* place = dev_ctx.eigen_device();
    Eigen::array<int, 1> reduce_dim = {1};
    eigen_vec_dx.device(*place) = eigen_dout_x.sum(reduce_dim);
    eigen_vec_dy.device(*place) = eigen_dout_y.sum(reduce_dim);
#endif
  }
};

inline framework::Tensor UnsqueezeTo(const framework::Tensor& src, int ndims) {
  const framework::DDim& shape = src.dims();
  int rank = shape.size();
  framework::Tensor res;
  res.ShareDataWith(src);
  PADDLE_ENFORCE_LE(
      rank, ndims,
      platform::errors::InvalidArgument(
          "The input Tensor's rank should be less than or equal to ndims"
          "Received input Tensor's rank = %d, ndims = %d",
          rank, ndims));
  if (rank < ndims) {
    std::vector<int64_t> new_dim(ndims, 1);
    for (int i = ndims - rank; i < ndims; i++) {
      new_dim[i] = shape[i - ndims + rank];
    }
    res.Resize(framework::make_ddim(new_dim));
  }
  return res;
}

template <typename DeviceContext, typename T>
class KronKernel : public framework::OpKernel<T> {
 public:
  virtual void Compute(const framework::ExecutionContext& ctx) const {
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");

    auto* out = ctx.Output<framework::Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());

    int ndims = out->dims().size();
    framework::Tensor xx = UnsqueezeTo(*x, ndims);
    framework::Tensor yy = UnsqueezeTo(*y, ndims);

    KronOpFunctor<DeviceContext, T> func;
    func(dev_ctx, xx, yy, out);
  }
};

template <typename DeviceContext, typename T>
class KronGradKernel : public framework::OpKernel<T> {
 public:
  virtual void Compute(const framework::ExecutionContext& ctx) const {
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* y = ctx.Input<framework::Tensor>("Y");
    auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));

    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
    dx->mutable_data<T>(ctx.GetPlace());
    dy->mutable_data<T>(ctx.GetPlace());

    int ndims = dout->dims().size();
    framework::Tensor xx = UnsqueezeTo(*x, ndims);
    framework::Tensor dxx = UnsqueezeTo(*dx, ndims);
    framework::Tensor yy = UnsqueezeTo(*y, ndims);
    framework::Tensor dyy = UnsqueezeTo(*dy, ndims);

    KronGradOpFunctor<DeviceContext, T> func;
    func(dev_ctx, *dout, xx, yy, &dxx, &dyy);
  }
};

}  // namespace operators
}  // namespace paddle