nn.py 45.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Contrib layers just related to the neural network.
"""

from __future__ import print_function

import numpy as np
import six
import os
import inspect
from paddle.fluid.layer_helper import LayerHelper
25
from paddle.fluid.layers import utils
Z
zhoushiyu 已提交
26
from ... import unique_name
C
Chengmo 已提交
27
from paddle.fluid.initializer import Normal, Constant, NumpyArrayInitializer
28
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
C
Chengmo 已提交
29
from paddle.fluid.framework import Variable, convert_np_dtype_to_dtype_
30
import warnings
31

32
__all__ = [
33 34
    'fused_elemwise_activation', 'sequence_topk_avg_pooling', 'var_conv_2d',
    'match_matrix_tensor', 'tree_conv', 'fused_embedding_seq_pool',
35
    'multiclass_nms2', 'search_pyramid_hash', 'shuffle_batch', 'partial_concat',
S
ShenLiang 已提交
36
    'partial_sum', 'tdm_child', 'rank_attention'
37
]
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101


def fused_elemwise_activation(x,
                              y,
                              functor_list,
                              axis=-1,
                              scale=0.0,
                              save_intermediate_out=True):
    """
    **Fused elementwise_add/mul and activation layers**

    This function computes an elementwise_add/mul cooperated with an activation.

    .. math::

        out = Unary(Binary(x, y))

    or

    .. math::

        out = Binary(x, Unary(y))

    Unary operators can be: `scale`, `relu`, `tanh`. Binary operators can be:
    `elementwise_add`, `elementwise_mul`.

    Args:
        x (Variable): left operation of the binary operator.
        y (Variable): right operator of the binary operator.
        functor_list (list of str): types of operator which will be executed
            by this layer. For example, ['elementwise_add', 'relu']
            (out = elementwise_add(x, relu(y))),
            or ['relu', 'elemmentwise_add'] (out = relu(elementwise_add(x, y))).
        axis (int32, default -1): axis of elementwise op.
        scale (float32, default 0): parameter of scale op.
        save_intermediate_out (bool, default True): whether to save the
            intermediate result, Unary(y) or Binary(x, y).

    Returns:
        Variable: The computation result.
    """
    if isinstance(functor_list, str):
        functor_list = functor_list.split(',')

    if not isinstance(functor_list, list) or len(functor_list) != 2:
        raise ValueError(
            'functor_list should be a list of str, and the length should be 2.')

    helper = LayerHelper('fused_elemwise_activation', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    intermediate_out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='fused_elemwise_activation',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out,
                 'IntermediateOut': intermediate_out},
        attrs={
            'axis': axis,
            'scale': scale,
            'save_intermediate_out': save_intermediate_out,
            'functor_list': functor_list
        })
    return out
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117


def var_conv_2d(input,
                row,
                col,
                input_channel,
                output_channel,
                filter_size,
                stride=1,
                param_attr=None,
                act=None,
                dtype='float32',
                name=None):
    """
    The var_conv_2d layer calculates the output base on the :attr:`input` with variable length,
    row, col, input channel, filter size and strides. Both :attr:`input`, :attr:`row`,
C
Chengmo 已提交
118 119
    and :attr:`col` are 1-level LodTensor. The convolution operation is same as conv2d layer with
    padding. Besides, input.dims[1] should be 1.
120 121

    .. code-block:: text
C
Chengmo 已提交
122

123 124 125
            If input_channel is 2 and given row lodTensor and col lodTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]
C
Chengmo 已提交
126
            input is a lodTensor:
127 128
                input.lod = [[60, 56]]	# where 60 = input_channel * 5 * 6
                input.dims = [116, 1]	# where 116 = 60 + 56
C
Chengmo 已提交
129

130
            If set output_channel is 3, filter_size is [3, 3], stride is [1, 1]:
C
Chengmo 已提交
131 132
                # where 90 = output_channel * [(5-1)/stride + 1] * [(6-1)/stride + 1]
                output.lod = [[90, 84]]
133 134 135
                output.dims = [174, 1]  # where 174 = 90 + 84

    Args:
T
tianshuo78520a 已提交
136 137 138
        input (Variable): The input should be 1-level LodTensor with dims[1] equals 1.
        row (Variable): The row should be 1-level LodTensor to provide height information.
        col (Variable): The col should be 1-level LodTensor to provide width information.
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        input_channel (int): The number of input channel.
        output_channel (int): The number of output channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of var_conv2d. If it is set to None or one attribute of ParamAttr, var_conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        dtype ('float32'): The data type of parameter and output.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None

    Returns:
        Variable: Output variable with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
C
Chengmo 已提交
171
            out = contrib.var_conv_2d(input=x_lod_tensor,
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
                                     row=row_lod_tensor,
                                     col=col_lod_tensor,
                                     input_channel=3,
                                     output_channel=5,
                                     filter_size=[3, 3],
                                     stride=1)
    """
    helper = LayerHelper('var_conv_2d', **locals())
    x_shape = list(input.shape)
    assert len(x_shape) == 2

    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')

    filter_shape = [
        int(output_channel),
        int(input_channel) * filter_size[0] * filter_size[1]
    ]
    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype, )

    conv_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)

    helper.append_op(
        type='var_conv_2d',
        inputs={
            'X': input,
            'ROW': row,
            'COLUMN': col,
            'W': filter_param,
        },
        outputs={"Out": conv_res,
                 "Col": tmp_res},
        attrs={
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        })

    return helper.append_activation(conv_res)


def match_matrix_tensor(x,
                        y,
                        channel_num,
                        act=None,
                        param_attr=None,
                        dtype='float32',
                        name=None):
    """
    Calculate the semantic matching matrix of two word sequences with variable length.
    Given a query A of length `n` and a title B of length `m`, the input shape are respectively
    [n, h] and [m, h], which h is hidden_size. If :attr:`channel_num` is set to 3,
    it will generate a learnable parameter matrix W with shape [h, 3, h].
C
Chengmo 已提交
233 234 235
    Then the semantic matching matrix of query A and title B is calculated by
    A * W * B.T = [n, h]*[h, 3, h]*[h, m] = [n, 3, m]. The learnable parameter matrix `W`
    is equivalent to a fully connected layer in the calculation process. If :attr:`act` is provided,
236 237 238 239 240 241
    the corresponding activation function will be applied to output matrix.
    The :attr:`x` and :attr:`y` should be LodTensor and only one level LoD is supported.

    .. code-block:: text

            Given a 1-level LoDTensor x:
C
Chengmo 已提交
242 243 244 245
                x.lod =  [
                    [2,                     3,                               ]]
                x.data = [[0.3, 0.1], [0.2, 0.3], [
                    0.5, 0.6], [0.7, 0.1], [0.3, 0.4]]
246 247 248 249 250 251
                x.dims = [5, 2]
            y is a Tensor:
                y.lod =  [[3,                                 1,       ]]
                y.data = [[0.1, 0.2], [0.3, 0.7], [0.9, 0.2], [0.4, 0.1]]
                y.dims = [4, 2]
            set channel_num 2, then we get a 1-level LoDTensor:
C
Chengmo 已提交
252 253
                # where 12 = channel_num * x.lod[0][0] * y.lod[0][0]
                out.lod =  [[12, 6]]
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
                out.dims = [18, 1]     # where 18 = 12 + 6

    Args:
        x (Variable): Input variable x which should be 1-level LodTensor.
        y (Variable): Input variable y which should be 1-level LodTensor.
        channel_num (int): The channel number of learnable parameter W.
        act (str, default None): Activation to be applied to the output of this layer.
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        dtype ('float32'): The data type of w data.
        name (str|None): A name for this layer(optional). If set None, the layer will be named automatically. Default: None

    Returns:
        Variable: output with LoD specified by this layer.

    Examples:
        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[10], lod_level=1)
            y_lod_tensor = layers.data(name='y', shape=[10], lod_level=1)
C
Chengmo 已提交
278 279
            out, out_tmp = contrib.match_matrix_tensor(
                x=x_lod_tensor, y=y_lod_tensor, channel_num=3)
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
    """
    helper = LayerHelper('match_matrix_tensor', **locals())

    x_shape = list(x.shape)
    y_shape = list(y.shape)
    assert len(x_shape) == 2 and len(y_shape) == 2 and x_shape[-1] == y_shape[
        -1]

    weight_shape = [x_shape[-1], channel_num, y_shape[-1]]
    w = helper.create_parameter(
        attr=helper.param_attr, shape=weight_shape, dtype=dtype, is_bias=False)
    mm_res = helper.create_variable_for_type_inference(dtype)
    tmp_res = helper.create_variable_for_type_inference(
        dtype, stop_gradient=True)
    helper.append_op(
        type='match_matrix_tensor',
        inputs={
            'X': x,
            'Y': y,
            'W': w,
        },
        outputs={"Out": mm_res,
                 "Tmp": tmp_res},
        attrs={'dim_t': channel_num})

    return helper.append_activation(mm_res), tmp_res


def sequence_topk_avg_pooling(input, row, col, topks, channel_num):
    """
    The :attr:`topks` is a list with incremental values in this function. For each topk,
C
Chengmo 已提交
311 312 313
    it will average the topk features as an output feature for each channel of every
    input sequence. Both :attr:`row` and :attr:`col` are LodTensor, which provide height
    and width information for :attr:`input` tensor. If feature size of input sequence is less
314 315 316 317 318 319 320 321
    than topk, it will padding 0 at the back.

    .. code-block:: text

            If channel_num is 2 and given row LoDTensor and col LoDTensor as follows:
                row.lod = [[5, 4]]
                col.lod = [[6, 7]]

C
Chengmo 已提交
322
            input is a LoDTensor with input.lod[0][i] = channel_num * row.lod[0][i] * col.lod[0][i]
323 324 325 326 327 328 329 330 331
                input.lod = [[60, 56]]  # where 60 = channel_num * 5 * 6
                input.dims = [116, 1]   # where 116 = 60 + 56

            If topks is [1, 3, 5], then we get a 1-level LoDTensor:
                out.lod =  [[5, 4]] 	# share Lod info with row LodTensor
                out.dims = [9, 6]   	# where 6 = len(topks) * channel_num

    Args:
        input (Variable): The input should be 2D LodTensor with dims[1] equals 1.
T
tianshuo78520a 已提交
332
        row (Variable): The row should be 1-level LodTensor to provide the height information
333
                        of the input tensor data.
T
tianshuo78520a 已提交
334
        col (Variable): The col should be 1-level LodTensor to provide the width information
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
                        of the input tensor data.
        topks (list): A list of incremental value to average the topk feature.
        channel_num (int): The number of input channel.

    Returns:
        Variable: output LodTensor specified by this layer.

    Examples:

        .. code-block:: python

            import numpy as np
            from paddle.fluid import layers
            from paddle.fluid import contrib

            x_lod_tensor = layers.data(name='x', shape=[1], lod_level=1)
            row_lod_tensor = layers.data(name='row', shape=[6], lod_level=1)
            col_lod_tensor = layers.data(name='col', shape=[6], lod_level=1)
            out = contrib.sequence_topk_avg_pooling(input=x_lod_tensor,
                                                   row=row_lod_tensor,
                                                   col=col_lod_tensor,
                                                   topks=[1, 3, 5],
                                                   channel_num=5)
    """
    helper = LayerHelper('sequence_topk_avg_pooling', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    pos = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype(), stop_gradient=True)
    helper.append_op(
        type='sequence_topk_avg_pooling',
        inputs={'X': input,
                'ROW': row,
                'COLUMN': col},
        outputs={'Out': out,
                 'pos': pos},
        attrs={'topks': topks,
               'channel_num': channel_num})

    return out
374 375 376 377 378 379 380 381 382 383 384


def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
C
Chengmo 已提交
385
    """
386
    ${comment}
C
Chengmo 已提交
387

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          # 10 for max_node_size of dataset, 5 for vector width
C
Chengmo 已提交
407 408
          nodes_vector = fluid.layers.data(
              name='vectors', shape=[10, 5], dtype='float32')
409 410
          # 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
C
Chengmo 已提交
411 412
          edge_set = fluid.layers.data(name='edge_set', shape=[
                                       10, 2], dtype='float32')
413 414 415 416 417 418 419 420 421
          # the shape of output will be [10, 6, 1],
          # 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = fluid.layers.tree_conv(nodes_vector, edge_set, 6, 1, 2)
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector = fluid.layers.reshape(out_vector, shape=[-1, 10, 6])
          out_vector_2 = fluid.layers.tree_conv(out_vector, edge_set, 3, 4, 2)
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = fluid.layers.reduce_max(out_vector, dim=2) # global pooling
    """
422 423 424
    check_type(nodes_vector, 'nodes_vector', (Variable), 'tree_conv')
    check_type(edge_set, 'edge_set', (Variable), 'tree_conv')

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    out = helper.create_variable_for_type_inference(dtype=dtype)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483


def fused_embedding_seq_pool(input,
                             size,
                             is_sparse=False,
                             padding_idx=None,
                             combiner='sum',
                             param_attr=None,
                             dtype='float32'):
    """
    **Embedding Sequence pool**

    This layer is the fusion of lookup table and sequence_pool.

    Args:
        input (Variable): Input is a Tensor<int64> Variable, which contains the IDs' information.
            The value of the input IDs should satisfy :math:`0<= id < size[0]`.
        size (tuple|list): The shape of the lookup_table parameter. It should
            have two elements which indicate the size of the dictionary of
            embedding and the size of each embedding vector respectively.
        is_sparse (bool): The flag indicating whether to use sparse update.
            Default: False.
        padding_idx (int|long|None): It will output all-zero padding data whenever
            lookup encounters :math:`padding\_idx` in Ids. If set :attr:`None`, it makes
            no effect to output. If :math:`padding\_idx < 0`, the :math:`padding\_idx`
            will automatically be converted to :math:`size[0] + padding\_idx` to use.
            Default: None.
        combiner (str): The pooling type of sequence_pool, and only support `sum`.
            Default: sum.
        param_attr (ParamAttr): Parameters for this layer.
        dtype (np.dtype|core.VarDesc.VarType|str): The dtype refers to the data type of output
            tensor. It can be float32, float_16, int etc.
    Returns:
        The sequence pooling variable which is a Tensor.
    Examples:
        .. code-block:: python
            import numpy as np
            import paddle.fluid as fluid

            dict_size = 20
C
Chengmo 已提交
484 485
            data_t = fluid.layers.data(
                name='word', shape=[1], dtype='int64', lod_level=1)
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
            padding_idx = np.random.randint(1, 10)
            out = fluid.contrib.fused_embedding_seq_pool(
                input=data_t,
                size=[dict_size, 32],
                param_attr='w',
                padding_idx=padding_idx,
                is_sparse=False)
    """
    helper = LayerHelper('fused_embedding_seq_pool', **locals())
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
    out = helper.create_variable_for_type_inference(dtype)
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
    helper.append_op(
        type='fused_embedding_seq_pool',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': out},
        attrs={
            'is_sparse': is_sparse,
            'combiner': combiner,
            'padding_idx': padding_idx
        })
    return out
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525


def multiclass_nms2(bboxes,
                    scores,
                    score_threshold,
                    nms_top_k,
                    keep_top_k,
                    nms_threshold=0.3,
                    normalized=True,
                    nms_eta=1.,
                    background_label=0,
                    return_index=False,
                    name=None):
    """
    **Multiclass NMS2**
C
Chengmo 已提交
526

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.
    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.
    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
C
Chengmo 已提交
544
                           coordinate values and the layout is
545 546
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
C
Chengmo 已提交
547 548
                           M is the number of bounding boxes, C is the
                           class number
549 550 551
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
C
Chengmo 已提交
552 553
                           N is the batch size, C is the class number, M is
                           number of bounding boxes. For each category there
554 555 556 557 558 559 560
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
C
Chengmo 已提交
561
        background_label (int): The index of background label, the background
562 563 564
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
C
Chengmo 已提交
565
                                 low confidence score. If not provided,
566 567
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
T
tianshuo78520a 已提交
568
                         the confidences after the filtering detections based
569 570 571 572 573 574 575 576 577 578 579
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        return_index(bool): Whether return selected index. Default: False
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        A tuple with two Variables: (Out, Index) if return_index is True,
C
Chengmo 已提交
580 581 582 583 584 585
        otherwise, a tuple with one Variable(Out) is returned.
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
        Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
        or A 2-D LoDTensor with shape [No, 10] represents the detections.
        Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3,
        x4, y4]. No is the total number of detections.
586 587
        If all images have not detected results, all elements in LoD will be
        0, and output tensor is empty (None).
C
Chengmo 已提交
588 589 590 591 592
        Index: Only return when return_index is True. A 2-D LoDTensor with
        shape [No, 1] represents the selected index which type is Integer.
        The index is the absolute value cross batches. No is the same number
        as Out. If the index is used to gather other attribute such as age,
        one needs to reshape the input(N, M, 1) to (N * M, 1) as first, where
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
        N is the batch size and M is the number of boxes.


    Examples:
        .. code-block:: python


            import paddle.fluid as fluid
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out, index = fluid.layers.multiclass_nms2(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False,
                                              return_index=True)
    """
    helper = LayerHelper('multiclass_nms2', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    index = helper.create_variable_for_type_inference(dtype='int')
    helper.append_op(
        type="multiclass_nms2",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output,
                 'Index': index})
    output.stop_gradient = True
    index.stop_gradient = True

    if return_index:
        return output, index
    return output
A
Aurelius84 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658


def search_pyramid_hash(input,
                        num_emb,
                        space_len,
                        pyramid_layer,
                        rand_len,
                        drop_out_percent,
                        is_training,
                        use_filter,
                        white_list_len,
                        black_list_len,
                        seed,
                        lr,
                        param_attr=None,
                        param_attr_wl=None,
                        param_attr_bl=None,
                        name=None,
C
Chengmo 已提交
659
                        distribute_update_vars=None,
A
Aurelius84 已提交
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
                        dtype='float32'):
    """
    **Pyramid hash embedding**

    Args:
        input (Variable): LoDTensor<int32> Variable contained the IDs' information.
        num_emb (int): The embedding size of output.
        space_len (int): The length of pyramid hash embedding space.
        pyramid_layer (int): The number of pyramid layers. It should be greater than 2.
        rand_len (int): The minimum length of pyramid hash cell.
        drop_out_percent (float): The probability of dropping out the input token randomly.
            It should satisfy: [0., 1.]
        is_training (bool): Whether in training or testing phrase.
        use_filter(bool): If set True, the white filter and black filter should be given by
            :attr:`param_attr_wl` and :attr:`param_attr_bl` .
        white_list_len(int): If set :math:`white_list_len>0` , white filter with shape [white_list_len, 1]
            should be provided by param_attr_wl.
        black_list_len(int): If set :math:`black_list_len>0` , black filter with shape [black_list_len, 1]
            should be provided by param_attr_bl.
        seed(int): The number of random seed.
        lr(float): The learning rate of weight created by :attr:`param_attr` with shape [space_len+rand_len, 1]
            in this layer.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` .
        param_attr_wl(ParamAttr): Specified parameters of white filter.
        param_attr_bl(ParamAttr): Specified parameters of black filter.
C
Chengmo 已提交
686
        distribute_update_vars(list[ParamAttr.name]): Decided which params should be updated in distribute training.
C
Chengmo 已提交
687
            Used in Distribute Transpiler to create a trainer/server program.
A
Aurelius84 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .
        dtype(str): The data type of output variable, float32.
    Returns:
        Variable: LoDTensor of pyramid hash embedding.
    """
    helper = LayerHelper('search_pyramid_hash', **locals())

    w_shape = [space_len + rand_len, 1]
    w = helper.create_parameter(
        attr=param_attr, shape=w_shape, dtype=dtype, is_bias=False)
    w.stop_gradient = True

    input_vars = {'X': input, 'W': w}
    if white_list_len > 0:
        wl_shape = [white_list_len, 1]
        white_list = helper.create_parameter(
            attr=param_attr_wl, shape=wl_shape, dtype=dtype, is_bias=False)
        white_list.stop_gradient = True
        input_vars['WhiteList'] = white_list

    if black_list_len >= 0:
        bl_shape = [black_list_len, 1]
        black_list = helper.create_parameter(
            attr=param_attr_bl, shape=bl_shape, dtype=dtype, is_bias=False)
        black_list.stop_gradient = True
        input_vars['BlackList'] = black_list

C
Chengmo 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
    distribute_update_vars_str = ""
    if distribute_update_vars:
        assert isinstance(distribute_update_vars, list)
        special_name_list = []
        if param_attr:
            special_name_list.append(param_attr.name)
        if param_attr_wl:
            special_name_list.append(param_attr_wl.name)
        if param_attr_bl:
            special_name_list.append(param_attr_bl.name)
        for param in distribute_update_vars:
            if param not in special_name_list:
                raise ValueError(
                    "Pyramid Hash layer didn't have parameter {}".format(param))
        distribute_update_vars_str = ",".join(distribute_update_vars)

A
Aurelius84 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
    res = helper.create_variable_for_type_inference(dtype)
    drop_pos = helper.create_variable_for_type_inference(dtype)
    x_temp_out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='pyramid_hash',
        inputs=input_vars,
        outputs={"Out": res,
                 "X_Temp_Out": x_temp_out,
                 'DropPos': drop_pos},
        attrs={
            'num_emb': num_emb,
            'space_len': space_len,
            'pyramid_layer': pyramid_layer,
            'rand_len': rand_len,
            'drop_out_percent': drop_out_percent,
            'is_training': is_training,
            'use_filter': use_filter,
            'white_list_len': white_list_len,
            'black_list_len': black_list_len,
            'seed': seed,
            'lr': lr,
C
Chengmo 已提交
753
            'distribute_update_vars': distribute_update_vars_str
A
Aurelius84 已提交
754 755 756
        })

    return res
Z
zhoushiyu 已提交
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820


def shuffle_batch(x, seed=None):
    """
    This layer shuffle input tensor :attr:`x` . Normally, :attr:`x` is 2-D LoDTensor.

    :attr:`x` is a LoDTensor to be shuffled with shape :math:`[N_1, N_2, ..., N_k, D]` . Note that the last dim of input will not be shuffled.
    :math:`N_1 * N_2 * ... * N_k` numbers of elements with length :math:`D` will be shuffled randomly.

    For Example:

    .. code-block:: text

      Input:
        x.data = [[1, 2], [3, 4], [5, 6], [7, 8]]
        x.dims = [4, 2]

      Attrs:
        seed = 2019

      Output:
        Out.data =[[7, 8], [1, 2], [3, 4], [5, 6]]
        Out.dims = [4, 2]

    Args:
        x (Variable): The input variable. The input variable is a N-D LoDTensor with type int, float32 or float64.
        seed (None|int|Variable): The start up seed. If set, seed will be set as the start up seed of shuffle engine.
                If not set(Default), start up seed of shuffle engine will be generated randomly.

    Returns:
        Variables: The shuffled LoDTensor with the same shape and lod as input.

    Examples:

        .. code-block:: python

            import paddle.fluid as fluid
            x = fluid.layers.data(name="x", shape=[-1, 4])
            out = fluid.contrib.layers.shuffle_batch(x)
    """
    helper = LayerHelper('shuffle_batch', **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    shuffle_idx = helper.create_variable_for_type_inference(dtype=np.int64)
    if seed is None and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed
    if seed is None:
        seed = np.random.randint(-65536, 65535)
    op_attrs = {}
    if isinstance(seed, int):
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("shuffle_batch_seed"),
            dtype="int64",
            persistable=True)
    helper.append_op(
        type='shuffle_batch',
        inputs={'X': x,
                'Seed': seed},
        outputs={'Out': out,
                 'ShuffleIdx': shuffle_idx,
                 'SeedOut': seed},
        attrs=op_attrs)
    return out
821 822 823 824 825 826 827


def partial_concat(input, start_index=0, length=-1):
    """
    **Partial Concat**
    This OP concatenates the inputs according to the start index and length. This
    OP exists in contrib, which means that it is not shown to the public.
C
Chengmo 已提交
828
    Only 2-D Tensor or LodTensor input is supported. Slice and concat can only be
829 830 831
    performed along the second dimension.

    .. code-block:: text
C
Chengmo 已提交
832

833 834 835 836 837 838 839 840
        Given:
            x = [[0, 1, 2],
                 [3, 4, 5]]
            y = [[6, 7 ,8],
                 [9, 10, 11]]
            output = partial_concat([x, y], start_index=0, length=2)

          we get:
C
Chengmo 已提交
841

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
            output = [[0, 1, 6, 7],
                      [3, 4, 9, 10]]

    Args:
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
        start_index(int32): The start index of each instance for partial concatenation.
            Default is 0.
        length(int32): The length of each instance for partial concatenation. Default is -1.
            Negative values for all elements after start_index.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
            import paddle.fluid as fluid
            x = fluid.data(name="x", shape=[None,3], dtype="float32")
            y = fluid.data(name="y", shape=[None,3], dtype="float32")
C
Chengmo 已提交
859 860
            concat = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2)
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
    """
    if not isinstance(input, list):
        warnings.warn(
            "The type of input in partial_concat should be list, but received %s."
            % (type(input)))
        input = [input]
    for id, x in enumerate(input):
        check_variable_and_dtype(
            x, 'input[' + str(id) + ']',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'partial_concat')
    check_type(start_index, 'start_index', (int), 'partial_concat')
    check_type(length, 'length', (int), 'partial_concat')
    inputs = {'X': input}
    attrs = {'start_index': start_index, 'length': length}
    helper = LayerHelper('partial_concat', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='partial_concat',
        inputs=inputs,
        outputs={'Out': [out]},
        attrs=attrs)
    return out
884 885 886 887 888


def partial_sum(input, start_index=0, length=-1):
    """
    **PartialSum**
C
Chengmo 已提交
889
    This Op can sum the vars by specifying the initial position(start_index) and length(length).
890
    This Op exists in contrib, which means that it is not shown to the public.
C
Chengmo 已提交
891
    Only 2-D Tensor or LodTensor input is supported. Slice and concat can only be
892 893
    performed along the second dimension.
    .. code-block:: text
C
Chengmo 已提交
894

895 896 897 898 899 900 901
        Given:
            x = [[0, 1, 2],
                 [3, 4, 5]]
            y = [[6, 7 ,8],
                 [9, 10, 11]]
            output = partial_sum([x, y], start_index=0, length=2)
          we get:
C
Chengmo 已提交
902

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
            output = [[6, 8],
                      [12, 14]]
    Args:
        input(list): List of input Tensors with data type float32, float64, int32,
            int64.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
        import paddle.fluid.layers as layers
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 3], dtype="float32")
        y = fluid.data(name="y", shape=[None, 3], dtype="float32")
        sum = layers.partial_sum([x,y], start_index=0, length=2)
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        xx = np.array([1,2,3,4,5,6]).reshape((2,3)).astype("float32")
        yy = np.array([6,5,4,4,5,6]).reshape((2,3)).astype("float32")
        out = exe.run(feed={"x":xx, "y":yy}, fetch_list=[sum])
    """
    for id, x in enumerate(input):
        check_variable_and_dtype(x, 'input[' + str(id) + ']',
                                 ['float32', 'float64', 'int32', 'int64'],
                                 'partial_sum')

    inputs = {'X': input}
    attrs = {}
    attrs['start_index'] = start_index
    attrs['length'] = length
    helper = LayerHelper('partial_sum', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='partial_sum', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
    return out
C
Chengmo 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022


def tdm_child(x, node_nums, child_nums, param_attr=None, dtype='int32'):
    """
    **Tdm Child**
     According to the input node_id on the given tree, return the corresponding child node_id and 
      whether child is a leaf node by leaf_mask value.
    .. code-block:: text

        Given:
            tree[[0], [1, 2], [3, 4], [5, 6]] # A binary tree with seven nodes
            x = [[2], [3]]
            node_nums = 7
            child_nums = 2

          we get:
            child = [[5, 6],
                     [0, 0]]
            leaf_mask = [[1, 1],
                         [0, 0]]
    Args:
        x(Variable): Variable contained the node_id information, dtype support int32/int64.
        node_nums(int): Number of total nodes.
        child_nums(int): Maximum number of child nodes per node.
        param_attr(ParamAttr): To specify the tdm-tree-info parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in: ref: `api_fluid_ParamAttr`, should
            has shape(node_nums, 3 + child_nums), dtype support int32/int64. 
            The dimension[1] of tdm-tree-info contains the following: 
            1. Item_id(int, shape(1)), if node is a leaf node, give its item_id corresponding to node_id, else give 0.
            2. Layer_id(int, shape(1)), indicates which layer the node is on.
            3. Parent_id(int, shape(1)), node's parent node.
            4. Child_id(int, shape(child_nums)), all child node's node_id of this node should be given. 
            If the number of child nodes is insufficient, padding 0 until child nums equal to child_nums
        dtype(str): The data type of output child and leaf_mask, support int32/int64.

    Returns:
        tuple: A tuple including input node's child(Variable) and leaf_mask(Variable). 
            If child is a leaf node, leaf_mask equal ot 1, otherwise equal to 0.

    Examples:
        .. code-block:: python
        import paddle.fluid as fluid
        import numpy as np
        x = fluid.data(name="x", shape=[None, 1], dtype="int32", lod_level=1)
        tree_info = [[0,0,0,1,2],
                     [0,1,0,3,4],[0,1,0,5,6],
                     [0,2,1,0,0],[1,2,1,0,0],[2,2,2,0,0],[3,2,2,0,0]]
        tree_info_np = np.array(tree_info)
        tree_info_np = np.reshape(tree_info_np, (7,5))
        node_nums = 7
        child_nums = 2
        child, leaf_mask  = fluid.contrib.layers.tdm_child(x, node_nums, child_nums,
                                param_attr=fluid.ParamAttr(
                                    initializer=fluid.initializer.NumpyArrayInitializer(
                                                                            tree_info_np)))
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        xx = np.array([[2],[3]]).reshape((2,1)).astype("int32")
        child_res, leaf_mask_res = exe.run(feed={"x":xx}, fetch_list=[child, leaf_mask])
     """
    helper = LayerHelper("tdm_child", **locals())
    check_dtype(dtype, 'dtype', ['int32', 'int64'],
                'fluid.contrib.layers.tdm_child')
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    tree_info = helper.create_parameter(
        attr=helper.param_attr,
        shape=[node_nums, 3 + child_nums],
        dtype=dtype,
        default_initializer=Constant(0))
    tree_info.stop_gradient = True

    child = helper.create_variable_for_type_inference(dtype=dtype)
    leaf_mask = helper.create_variable_for_type_inference(dtype=dtype)

    helper.append_op(
        type='tdm_child',
        inputs={'X': x,
                'TreeInfo': tree_info},
        outputs={'Child': child,
                 'LeafMask': leaf_mask},
        attrs={'child_nums': child_nums,
               'dtype': c_dtype},
        stop_gradient=True)
    return (child, leaf_mask)
S
ShenLiang 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084


def rank_attention(input,
                   rank_offset,
                   rank_param_shape,
                   rank_param_attr,
                   max_rank=3):
    """
    **Rank Attention layer**
    This Op can calculate rank attention between input and rank_param, and 
    rank_param gives the organization of data. Notice: It currently supports
    GPU device.
    This Op exists in contrib, which means that it is not shown to the public.
    Args:
        input: Tensor with data type float32, float64.
        rank_offset: Tensor with data type int32.
        rank_para_shape: The shape of rank_param.
        rank_param_attr: Attribute initializer of rank_param.
        max_rank: The max rank of input's ranks.
    Returns:
        Variable: A Tensor with the same data type as input's.
    Examples:
        .. code-block:: python
           import paddle.fluid as fluid
           import numpy as np
           
           input = fluid.data(name="input", shape=[None, 2], dtype="float32")
           rank_offset = fluid.data(name="rank_offset", shape=[None, 7], dtype="int32")
           out = fluid.contrib.layers.rank_attention(input=input,
                                                     rank_offset=rank_offset,
                                                     rank_param_shape=[18,3],
                                                     rank_param_attr=
                                                       fluid.ParamAttr(learning_rate=1.0,
                                                                     name="ubm_rank_param.w_0",
                                                                     initializer=
                                                                     fluid.initializer.Xavier(uniform=False)),
                                                      max_rank=3)
    """
    helper = LayerHelper('rank_attention', **locals())
    dtype = helper.input_dtype(input_param_name='input')
    input_shape = input.shape
    assert input_shape[1] * max_rank * max_rank == rank_param_shape[0]

    rank_param = helper.create_parameter(
        attr=rank_param_attr, shape=rank_param_shape, dtype=dtype)
    rank_param.stop_gradient = False

    output = helper.create_variable_for_type_inference(dtype)
    ins_rank = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)

    helper.append_op(
        type="rank_attention",
        inputs={
            "X": input,
            "RankOffset": rank_offset,
            "RankParam": rank_param
        },
        outputs={"Out": output},
        attrs={"MaxRank": max_rank})

    return output