conv_compute_test.cc 9.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/conv_compute.h"
#include <gtest/gtest.h>
T
tensor-tang 已提交
17 18
#include <memory>
#include <utility>
T
tensor-tang 已提交
19 20 21 22 23 24 25 26
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

T
tensor-tang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
template <typename dtype>
void conv_compute_ref(const operators::ConvParam& param) {
  auto input = param.x;
  auto filter = param.filter;
  auto output = param.output;
  DDim input_dims = param.x->dims();
  DDim filter_dims = param.filter->dims();
  DDim output_dims = param.output->dims();
  std::vector<int> paddings = param.paddings;
  std::vector<int> strides = param.strides;
  std::vector<int> dilations = param.dilations;
  int groups = param.groups;

  auto input_data = param.x->data<float>();
  auto output_data = param.output->mutable_data<float>();
  auto filter_data = param.filter->mutable_data<float>();
  const float* bias_data = nullptr;
  if (param.bias != nullptr) {
    bias_data = param.bias->mutable_data<float>();
  }
  bool flag_bias = bias_data != nullptr;
  bool flag_relu = false;  // TODO(hong19860320) param.relu

  int num = input_dims[0];
  int chout = output_dims[1];
  int hout = output_dims[2];
  int wout = output_dims[3];

  int chin = input_dims[1];
  int hin = input_dims[2];
  int win = input_dims[3];
  int out_c_group = chout / groups;
  int in_c_group = chin / groups;

  int stride_h = strides[0];
  int stride_w = strides[1];
  int dilation_h = dilations[0];
  int dilation_w = dilations[1];
  int padding_h = paddings[0];
  int padding_w = paddings[1];
  int kernel_h = filter_dims[2];
  int kernel_w = filter_dims[3];

  for (int n = 0; n < num; ++n) {
    for (int g = 0; g < groups; ++g) {
      for (int oc = 0; oc < out_c_group; ++oc) {
        for (int oh = 0; oh < hout; ++oh) {
          for (int ow = 0; ow < wout; ++ow) {
            int out_idx = n * groups * out_c_group * hout * wout +
                          g * out_c_group * hout * wout + oc * hout * wout +
                          oh * wout + ow;
78 79 80
            output_data[out_idx] =
                flag_bias ? static_cast<float>(bias_data[g * out_c_group + oc])
                          : 0.f;
T
tensor-tang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
            for (int ic = 0; ic < in_c_group; ++ic) {
              for (int kh = 0; kh < kernel_h; ++kh) {
                for (int kw = 0; kw < kernel_w; ++kw) {
                  int iw = ow * stride_w - padding_w + kw * (dilation_w);
                  int ih = oh * stride_h - padding_h + kh * (dilation_h);
                  if (iw < 0 || iw >= win) continue;
                  if (ih < 0 || ih >= hin) continue;

                  int iidx = n * chin * hin * win + g * in_c_group * hin * win +
                             ic * hin * win + ih * win + iw;
                  int widx =
                      g * out_c_group * in_c_group * kernel_h * kernel_w +
                      oc * in_c_group * kernel_h * kernel_w +
                      ic * kernel_h * kernel_w + kh * kernel_w + kw;

                  output_data[out_idx] +=
                      (dtype)input_data[iidx] * (dtype)filter_data[widx];
                }
              }
            }
            if (flag_relu) {
              output_data[out_idx] =
                  output_data[out_idx] > 0.f ? output_data[out_idx] : 0.f;
            }
          }
        }
      }
    }
  }
}

T
tensor-tang 已提交
112
TEST(conv_arm, retrive_op) {
113 114
  auto conv = KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>(
      "conv2d");
T
tensor-tang 已提交
115 116 117 118 119 120 121 122 123 124
  ASSERT_FALSE(conv.empty());
  ASSERT_TRUE(conv.front());
}

TEST(conv_arm, init) {
  ConvCompute conv;
  ASSERT_EQ(conv.precision(), PRECISION(kFloat));
  ASSERT_EQ(conv.target(), TARGET(kARM));
}

T
tensor-tang 已提交
125 126 127
TEST(conv_arm, compute) {
  DeviceInfo::Init();
  for (auto n : {1, 2}) {
128 129 130 131 132 133
    for (auto ic : {6, 32 /*, 128*/}) {
      for (auto oc : {6, 32 /*, 128*/}) {
        for (auto ih : {9, 18 /*, 56 , 112, 224, 512*/}) {
          for (auto iw : {9, 18 /*, 56, 112, 224, 512*/}) {
            for (auto flag_bias : {false, true}) {
              for (auto flag_relu : {false, true}) {
T
tensor-tang 已提交
134
                for (auto depthwise : {false, true}) {
135
                  for (auto dilation : {1, 2}) {
T
tensor-tang 已提交
136
                    for (auto stride : {1, 2}) {
137 138
                      for (auto padding : {0, 1, 2}) {
                        for (auto ks : {1, 3, 5}) {
T
tensor-tang 已提交
139
                          int group = 1;
140 141
                          if (depthwise) {  // depthwise convolution ?
                            group = oc = ic;
T
tensor-tang 已提交
142 143
                          }
                          // get input, filter and output shape
144 145 146
                          std::vector<int64_t> input_shape = {n, ic, ih, iw};
                          std::vector<int64_t> filter_shape = {oc, ic / group,
                                                               ks, ks};
147 148 149 150
                          const int dks = dilation * (ks - 1) + 1;
                          int oh = (ih + 2 * padding - dks) / stride + 1;
                          int ow = (iw + 2 * padding - dks) / stride + 1;
                          std::vector<int64_t> output_shape({n, oc, oh, ow});
T
tensor-tang 已提交
151
                          // resize input, filter and output
152 153 154 155 156
                          Tensor input;
                          Tensor filter;
                          Tensor bias;
                          Tensor output;
                          Tensor output_ref;
157 158 159 160
                          input.Resize(input_shape);
                          filter.Resize(filter_shape);
                          output.Resize(output_shape);
                          output_ref.Resize(output_shape);
161 162 163 164 165 166
                          LOG(INFO) << "input: " << input.dims();
                          LOG(INFO) << "filter: " << filter.dims()
                                    << " padding:" << padding
                                    << " stride:" << stride
                                    << " dilation:" << dilation;
                          LOG(INFO) << "output: " << output.dims();
T
tensor-tang 已提交
167 168 169 170 171 172 173
                          auto* input_data = input.mutable_data<float>();
                          auto* filter_data = filter.mutable_data<float>();
                          auto* output_data = output.mutable_data<float>();
                          for (int i = 0; i < input.dims().production(); i++) {
                            input_data[i] = static_cast<float>(i % 128);
                          }
                          for (int i = 0; i < filter.dims().production(); i++) {
174 175 176
                            filter_data[i] =
                                i * 0.001f /
                                static_cast<float>(filter.dims().production());
T
tensor-tang 已提交
177
                          }
178 179 180 181 182 183
                          // prepare kernel params and run
                          ConvCompute conv;
                          std::unique_ptr<KernelContext> ctx(new KernelContext);
                          ctx->As<ARMContext>();
                          conv.SetContext(std::move(ctx));
                          operators::ConvParam param;
T
tensor-tang 已提交
184 185 186 187
                          param.x = &input;
                          param.filter = &filter;
                          param.output = &output;
                          param.bias = nullptr;
188 189 190 191 192 193 194 195
                          if (flag_bias) {
                            bias.Resize({oc});
                            auto* bias_data = bias.mutable_data<float>();
                            for (int i = 0; i < bias.dims().production(); i++) {
                              bias_data[i] = static_cast<float>(i);
                            }
                            param.bias = &bias;
                          }
T
tensor-tang 已提交
196 197 198 199 200 201 202
                          // TODO(hong19860320) param.relu = flag_relu;
                          param.paddings = std::vector<int>({padding, padding});
                          param.strides = std::vector<int>({stride, stride});
                          param.dilations =
                              std::vector<int>({dilation, dilation});
                          param.groups = group;
                          conv.SetParam(param);
203 204
                          conv.Launch();
                          // invoking ref implementation and compare results
T
tensor-tang 已提交
205 206
                          param.output = &output_ref;
                          conv_compute_ref<float>(param);
207 208
                          auto* output_ref_data =
                              output_ref.mutable_data<float>();
T
tensor-tang 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
                          for (int i = 0; i < output.dims().production(); i++) {
                            EXPECT_NEAR(output_data[i], output_ref_data[i],
                                        1e-3);
                          }
                        }
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  }
T
tensor-tang 已提交
225 226 227 228 229 230 231
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

T
tensor-tang 已提交
232 233
USE_LITE_KERNEL(conv2d, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL(depthwise_conv2d, kARM, kFloat, kNCHW, def);