mean_op.cc 3.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mean_op.h"
C
chengduo 已提交
16
#include <string>
L
liaogang 已提交
17 18 19
namespace paddle {
namespace operators {

D
dongzhihong 已提交
20
class MeanOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25 26 27 28 29
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of MeanOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of MeanOp should not be null.");
    ctx->SetOutputDim("Out", {1});
L
liaogang 已提交
30 31 32
  }
};

D
dongzhihong 已提交
33
class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
34
 public:
Y
Yu Yang 已提交
35
  void Make() override {
T
tensor-tang 已提交
36
    AddInput("X", "(Tensor) The input of mean op");
37
    AddOutput("Out", "(Tensor) The output of mean op");
K
kexinzhao 已提交
38
    AddComment(R"DOC(
T
tensor-tang 已提交
39
Mean Operator calculates the mean of all elements in X.
K
kexinzhao 已提交
40

41
)DOC");
L
liaogang 已提交
42 43 44
  }
};

C
chengduo 已提交
45 46 47 48 49 50 51 52
class MeanOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

D
dongzhihong 已提交
53
class MeanGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
54 55 56
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

57
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
58
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
59
    ctx->ShareLoD("X", framework::GradVarName("X"));
Y
Yu Yang 已提交
60
  }
C
chengduo 已提交
61 62 63

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
S
sneaxiy 已提交
64 65
    auto input_data_type =
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type();
C
chengduo 已提交
66 67
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
Y
Yu Yang 已提交
68 69
};

70 71 72 73 74
class MeanGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
75 76
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
77 78 79 80
    grad_op->SetType("mean_grad");
    grad_op->SetInput("X", Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
Y
Yu Yang 已提交
81
    return std::unique_ptr<framework::OpDesc>(grad_op);
82 83 84
  }
};

S
sneaxiy 已提交
85 86
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(MeanGradNoNeedBufferVarsInference, "X");

L
liaogang 已提交
87 88 89
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
90
namespace ops = paddle::operators;
C
chengduo 已提交
91 92
REGISTER_OPERATOR(mean, ops::MeanOp, ops::MeanOpMaker, ops::MeanOpInferVarType,
                  ops::MeanGradMaker);
S
sneaxiy 已提交
93 94
REGISTER_OPERATOR(mean_grad, ops::MeanGradOp,
                  ops::MeanGradNoNeedBufferVarsInference);
Q
QI JUN 已提交
95 96 97 98 99 100
REGISTER_OP_CPU_KERNEL(
    mean, ops::MeanKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MeanKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    mean_grad, ops::MeanGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MeanGradKernel<paddle::platform::CPUDeviceContext, double>);