test_sparse_pooling_op.py 3.5 KB
Newer Older
Z
zhangkaihuo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.fluid.core as core
from paddle import _C_ops
from paddle.fluid.framework import _test_eager_guard
Z
zhangkaihuo 已提交
22
import copy
Z
zhangkaihuo 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47


class TestMaxPool3DFunc(unittest.TestCase):
    def setInput(self):
        paddle.seed(0)
        self.dense_x = paddle.randn((1, 4, 4, 4, 4))

    def setKernelSize(self):
        self.kernel_sizes = [3, 3, 3]

    def setStride(self):
        self.strides = [1, 1, 1]

    def setPadding(self):
        self.paddings = [0, 0, 0]

    def setUp(self):
        self.setInput()
        self.setKernelSize()
        self.setStride()
        self.setPadding()

    def test(self):
        with _test_eager_guard():
            self.setUp()
Z
zhangkaihuo 已提交
48
            self.dense_x.stop_gradient = False
Z
zhangkaihuo 已提交
49
            sparse_x = self.dense_x.to_sparse_coo(4)
50
            sparse_out = paddle.incubate.sparse.nn.functional.max_pool3d(
Z
zhangkaihuo 已提交
51 52 53 54
                sparse_x,
                self.kernel_sizes,
                stride=self.strides,
                padding=self.paddings)
Z
zhangkaihuo 已提交
55 56
            out = sparse_out.to_dense()
            out.backward(out)
Z
zhangkaihuo 已提交
57

Z
zhangkaihuo 已提交
58
            dense_x = copy.deepcopy(self.dense_x)
Z
zhangkaihuo 已提交
59
            dense_out = paddle.nn.functional.max_pool3d(
Z
zhangkaihuo 已提交
60
                dense_x,
Z
zhangkaihuo 已提交
61 62 63 64
                self.kernel_sizes,
                stride=self.strides,
                padding=self.paddings,
                data_format='NDHWC')
Z
zhangkaihuo 已提交
65 66
            dense_out.backward(dense_out)

Z
zhangkaihuo 已提交
67
            #compare with dense
Z
zhangkaihuo 已提交
68 69
            assert np.allclose(dense_out.numpy(), out.numpy())
            assert np.allclose(dense_x.grad.numpy(), self.dense_x.grad.numpy())
Z
zhangkaihuo 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106


class TestStride(TestMaxPool3DFunc):
    def setStride(self):
        self.strides = 1


class TestPadding(TestMaxPool3DFunc):
    def setPadding(self):
        self.paddings = 1

    def setInput(self):
        self.dense_x = paddle.randn((1, 5, 6, 8, 3))


class TestKernelSize(TestMaxPool3DFunc):
    def setKernelSize(self):
        self.kernel_sizes = [5, 5, 5]

    def setInput(self):
        paddle.seed(0)
        self.dense_x = paddle.randn((1, 6, 9, 6, 3))


class TestInput(TestMaxPool3DFunc):
    def setInput(self):
        paddle.seed(0)
        self.dense_x = paddle.randn((2, 6, 7, 9, 3))
        dropout = paddle.nn.Dropout(0.8)
        self.dense_x = dropout(self.dense_x)


class TestMaxPool3DAPI(unittest.TestCase):
    def test(self):
        with _test_eager_guard():
            dense_x = paddle.randn((2, 3, 6, 6, 3))
            sparse_x = dense_x.to_sparse_coo(4)
107
            max_pool3d = paddle.incubate.sparse.nn.MaxPool3D(
Z
zhangkaihuo 已提交
108 109 110 111 112 113 114 115 116 117 118
                kernel_size=3, data_format='NDHWC')
            out = max_pool3d(sparse_x)
            out = out.to_dense()

            dense_out = paddle.nn.functional.max_pool3d(
                dense_x, 3, data_format='NDHWC')
            assert np.allclose(dense_out.numpy(), out.numpy())


if __name__ == "__main__":
    unittest.main()