# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle import paddle.fluid.core as core from paddle import _C_ops from paddle.fluid.framework import _test_eager_guard import copy class TestMaxPool3DFunc(unittest.TestCase): def setInput(self): paddle.seed(0) self.dense_x = paddle.randn((1, 4, 4, 4, 4)) def setKernelSize(self): self.kernel_sizes = [3, 3, 3] def setStride(self): self.strides = [1, 1, 1] def setPadding(self): self.paddings = [0, 0, 0] def setUp(self): self.setInput() self.setKernelSize() self.setStride() self.setPadding() def test(self): with _test_eager_guard(): self.setUp() self.dense_x.stop_gradient = False sparse_x = self.dense_x.to_sparse_coo(4) sparse_out = paddle.incubate.sparse.nn.functional.max_pool3d( sparse_x, self.kernel_sizes, stride=self.strides, padding=self.paddings) out = sparse_out.to_dense() out.backward(out) dense_x = copy.deepcopy(self.dense_x) dense_out = paddle.nn.functional.max_pool3d( dense_x, self.kernel_sizes, stride=self.strides, padding=self.paddings, data_format='NDHWC') dense_out.backward(dense_out) #compare with dense assert np.allclose(dense_out.numpy(), out.numpy()) assert np.allclose(dense_x.grad.numpy(), self.dense_x.grad.numpy()) class TestStride(TestMaxPool3DFunc): def setStride(self): self.strides = 1 class TestPadding(TestMaxPool3DFunc): def setPadding(self): self.paddings = 1 def setInput(self): self.dense_x = paddle.randn((1, 5, 6, 8, 3)) class TestKernelSize(TestMaxPool3DFunc): def setKernelSize(self): self.kernel_sizes = [5, 5, 5] def setInput(self): paddle.seed(0) self.dense_x = paddle.randn((1, 6, 9, 6, 3)) class TestInput(TestMaxPool3DFunc): def setInput(self): paddle.seed(0) self.dense_x = paddle.randn((2, 6, 7, 9, 3)) dropout = paddle.nn.Dropout(0.8) self.dense_x = dropout(self.dense_x) class TestMaxPool3DAPI(unittest.TestCase): def test(self): with _test_eager_guard(): dense_x = paddle.randn((2, 3, 6, 6, 3)) sparse_x = dense_x.to_sparse_coo(4) max_pool3d = paddle.incubate.sparse.nn.MaxPool3D( kernel_size=3, data_format='NDHWC') out = max_pool3d(sparse_x) out = out.to_dense() dense_out = paddle.nn.functional.max_pool3d( dense_x, 3, data_format='NDHWC') assert np.allclose(dense_out.numpy(), out.numpy()) if __name__ == "__main__": unittest.main()