nn.py 123.0 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
L
lujun 已提交
22
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter
M
minqiyang 已提交
23
from ..param_attr import ParamAttr
24
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
25
import numpy as np
26
import numbers
27
import logging
28

29
__all__ = [
S
songyouwei 已提交
30 31 32 33
    'Conv2D', 'Conv3D', 'Pool2D', 'FC', 'Linear', 'BatchNorm', 'Embedding',
    'GRUUnit', 'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct',
    'Conv2DTranspose', 'Conv3DTranspose', 'GroupNorm', 'SpectralNorm',
    'TreeConv'
34
]
M
minqiyang 已提交
35 36


X
Xin Pan 已提交
37
class Conv2D(layers.Layer):
38
    """
39 40
    This interface is used to construct a callable object of the ``Conv2D`` class.
    For more details, refer to code examples.
41 42 43
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
44 45 46
    the feature map, H is the height of the feature map, and W is the width of the feature map.
    Filter's shape is [MCHW] , where M is the number of output feature map,
    C is the number of input feature map, H is the height of the filter,
47
    and W is the width of the filter. If the groups is greater than 1,
48
    C will equal the number of input feature map divided by the groups.
49
    Please refer to UFLDL's `convolution
50
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
51 52 53 54 55 56 57 58 59
    for more detials.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

60
        Out = \\sigma (W \\ast X + b)
61 62 63

    Where:

64 65
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
66
    * :math:`\\ast`: Convolution operation.
67
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

90
    Parameters:
91
        num_channels(int): The number of channels in the input image.
92
        num_filters(int): The number of filter. It is as same as the output
93 94
            feature map.
        filter_size (int or tuple): The filter size. If filter_size is a tuple,
95 96
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
97
        stride (int or tuple, optional): The stride size. If stride is a tuple, it must
98
            contain two integers, (stride_H, stride_W). Otherwise, the
99 100
            stride_H = stride_W = stride. Default: 1.
        padding (int or tuple, optional): The padding size. If padding is a tuple, it must
101
            contain two integers, (padding_H, padding_W). Otherwise, the
102 103
            padding_H = padding_W = padding. Default: 0.
        dilation (int or tuple, optional): The dilation size. If dilation is a tuple, it must
104
            contain two integers, (dilation_H, dilation_W). Otherwise, the
105 106
            dilation_H = dilation_W = dilation. Default: 1.
        groups (int, optional): The groups number of the Conv2d Layer. According to grouped
107 108 109
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
110 111
            connected to the second half of the input channels. Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
112 113 114 115
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
116
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d.
117 118 119 120
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
121 122 123 124 125
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None.
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
126

127 128 129 130
    Attribute:
        **weight** (Parameter): the learnable weights of filter of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.
131

132 133 134
    Returns:
        None
    
135
    Raises:
136
        ValueError: if ``use_cudnn`` is not a bool value.
137 138 139

    Examples:
        .. code-block:: python
L
lujun 已提交
140

141 142 143 144 145
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

146
          data = np.random.uniform(-1, 1, [10, 3, 32, 32]).astype('float32')
147
          with fluid.dygraph.guard():
148
              conv2d = Conv2D(3, 2, 3)
149 150
              data = to_variable(data)
              conv = conv2d(data)
151 152 153

    """

M
minqiyang 已提交
154
    def __init__(self,
155
                 num_channels,
M
minqiyang 已提交
156 157 158 159 160 161 162 163
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
164 165 166
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
167
        assert param_attr is not False, "param_attr should not be False here."
168 169
        super(Conv2D, self).__init__()
        self._num_channels = num_channels
M
minqiyang 已提交
170 171 172 173
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
174
        self._act = act
M
minqiyang 已提交
175 176 177
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
178 179 180 181 182
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
183 184 185 186 187
        if (self._num_channels == self._groups and
                num_filters % self._num_channels == 0 and not self._use_cudnn):
            self._l_type = 'depthwise_conv2d'
        else:
            self._l_type = 'conv2d'
M
minqiyang 已提交
188

189
        self._num_channels = num_channels
190 191
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
192
        else:
193
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
194
                raise ValueError("num_channels must be divisible by groups.")
195 196
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
197
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
M
minqiyang 已提交
198 199

        def _get_default_param_initializer():
200 201
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
202 203 204
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

205
        self._filter_param = self.create_parameter(
206
            attr=self._param_attr,
M
minqiyang 已提交
207 208 209 210
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

211
        self._bias_param = self.create_parameter(
212 213
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
214 215
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    @property
    def weight(self):
        return self._filter_param

    @weight.setter
    def weight(self, value):
        self._filter_param = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

M
minqiyang 已提交
233
    def forward(self, input):
M
minqiyang 已提交
234 235 236
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
237 238 239 240 241 242
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
243
            outputs={"Output": pre_bias},
M
minqiyang 已提交
244 245 246 247
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
248
                'groups': self._groups if self._groups else 1,
M
minqiyang 已提交
249 250 251 252
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

253 254 255 256 257 258 259 260 261 262 263
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
264

L
lujun 已提交
265
        # Currently, we don't support inplace in dygraph mode
266
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
267 268


L
lujun 已提交
269
class Conv3D(layers.Layer):
270 271 272 273 274
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
D
DuYao 已提交
275 276
    Output(Output) are multidimensional tensors with a shape of 
    :math:`[N, C, D, H, W]` . Where N is batch size, C is the number of
277 278 279 280 281 282 283 284 285 286 287 288 289 290
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

D
DuYao 已提交
291
    * :math:`X`: Input value, a tensor with NCDHW or NDHWC format.
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

317
    Parameters:
318
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
319
        num_filters(int): The number of filter. It is as same as the output image channel.
D
DuYao 已提交
320
        filter_size (int|tuple, optional): The filter size. If filter_size is a tuple,
321
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
D
DuYao 已提交
322 323 324
            Otherwise, the filter will be a square, filter_size_depth = filter_size_height
            = filter_size_width = filter_size.
        stride (int|tuple, optional): The stride size. If stride is a tuple, it must
325
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
D
DuYao 已提交
326 327
            stride_D = stride_H = stride_W = stride. The default value is 1.
        padding (int|tuple, optional): The padding size. If padding is a tuple, it must
328
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
D
DuYao 已提交
329 330
            padding_D = padding_H = padding_W = padding. The default value is 0.
        dilation (int|tuple, optional): The dilation size. If dilation is a tuple, it must
331
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
332 333
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups (int, optional): The groups number of the Conv3d Layer. According to grouped
334 335 336
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
D
DuYao 已提交
337 338
            connected to the second half of the input channels. The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
339 340 341
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
D
DuYao 已提交
342 343
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d.
344 345 346
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
347 348 349 350 351
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn (bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
352
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
353

D
DuYao 已提交
354 355 356 357
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
358

359
    Returns:
D
DuYao 已提交
360
        None.
361 362 363 364 365 366 367 368

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

369 370 371 372 373 374
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
375
                    num_channels=3, num_filters=2, filter_size=3, act="relu")
376 377
              ret = conv3d(fluid.dygraph.base.to_variable(data))

378 379
    """

L
lujun 已提交
380
    def __init__(self,
381
                 num_channels,
L
lujun 已提交
382 383 384 385 386 387 388 389 390
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
391 392
                 act=None,
                 dtype='float32'):
L
lujun 已提交
393
        assert param_attr is not False, "param_attr should not be False here."
394 395
        super(Conv3D, self).__init__()
        self._num_channels = num_channels
L
lujun 已提交
396 397 398
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
399
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
400 401
        self._act = act
        self._use_cudnn = use_cudnn
402 403 404 405
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
406
        self._dtype = dtype
407 408

        if self._groups is None:
409
            num_filter_channels = self._num_channels
L
lujun 已提交
410
        else:
411
            if self._num_channels % self._groups != 0:
L
lujun 已提交
412
                raise ValueError("num_channels must be divisible by groups.")
413
            num_filter_channels = self._num_channels // self._groups
L
lujun 已提交
414

415 416
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
417 418 419

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
420
                2] * self._num_channels
L
lujun 已提交
421 422 423 424
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self.create_parameter(
425
            attr=self._param_attr,
L
lujun 已提交
426 427 428 429 430
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        self._bias_param = self.create_parameter(
431 432
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
433 434 435
            dtype=self._dtype,
            is_bias=True)

436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    @property
    def weight(self):
        return self._filter_param

    @weight.setter
    def weight(self, value):
        self._filter_param = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
452 453 454 455 456
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
457
            type='conv3d',
L
lujun 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

472 473 474 475 476 477 478 479 480 481 482
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
L
lujun 已提交
483 484 485 486 487

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

D
DuYao 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
           D^\prime_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H^\prime_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 \\\\
           D_{out} &\in [ D^\prime_{out}, D^\prime_{out} + strides[0] ] \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[1] ] \\\\

    **Note**:

          The conv3d_transpose can be seen as the backward of the conv3d. For conv3d, 
          when stride > 1, conv3d maps multiple input shape to the same output shape, 
          so for conv3d_transpose, when stride > 1, input shape maps multiple output shape.
          If output_size is None, :math:`H_{out} = H^\prime_{out}, :math:`H_{out} = \
          H^\prime_{out}, W_{out} = W^\prime_{out}`; else, the :math:`D_{out}` of the output 
          size must between :math:`D^\prime_{out}` and :math:`D^\prime_{out} + strides[0]`, 
          the :math:`H_{out}` of the output size must between :math:`H^\prime_{out}` 
          and :math:`H^\prime_{out} + strides[1]`, and the :math:`W_{out}` of the output size must 
          between :math:`W^\prime_{out}` and :math:`W^\prime_{out} + strides[2]`, 
          conv3d_transpose can compute the kernel size automatically.

L
lujun 已提交
553

554
    Parameters:
555
        num_channels(int): The number of channels in the input image.
L
lujun 已提交
556 557
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
558
        filter_size(int|tuple): The filter size. If filter_size is a tuple,
L
lujun 已提交
559
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
560
            Otherwise, the filter will be a square.
D
DuYao 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
        padding(int|tuple, optional): The padding size. The padding argument effectively
             adds `dilation * (kernel - 1)` amount of zero-padding on both sides of input. If `padding` is a string,
             either 'VALID' or 'SAME' supported, which is the padding algorithm. If `padding`
             is a tuple or list, it could be in three forms: `[pad_depth, pad_height, pad_width]` or
            `[pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right]`,
            and when `data_format` is `'NCDHW'`, `padding` can be in the form
            `[[0,0], [0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]]`.
            when `data_format` is `'NDHWC'`, `padding` can be in the form
            `[[0,0], [pad_depth_front, pad_depth_back], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]`.
            The default value is 0.
        stride(int|tuple, optional): The stride size. It means the stride in transposed convolution. 
            If stride is a tuple, it must contain three integers, (stride_depth, stride_height, 
            stride_width). Otherwise, stride_depth = stride_height = stride_width = stride. 
            The default value is 1.
        dilation(int|tuple, optional): The dilation size. If dilation is a tuple, it must
L
lujun 已提交
576
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
D
DuYao 已提交
577 578
            dilation_D = dilation_H = dilation_W = dilation. The default value is 1.
        groups(int, optional): The groups number of the Conv3d transpose layer. Inspired by
L
lujun 已提交
579 580 581 582
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
D
DuYao 已提交
583 584
            The default value is 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable parameters/weights
L
lujun 已提交
585 586
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
587 588
            is not set, the parameter is initialized with Xavier. The default value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of conv3d_transpose.
L
lujun 已提交
589 590 591
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
D
DuYao 已提交
592 593 594 595 596 597 598
            is not set, the bias is initialized zero. The default value is None.
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. The default value is True.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            The default value is None.
        name(str, optional): The default value is None. Normally there is no need for user 
            to set this property. For more information, please refer to :ref:`api_guide_Name`.
L
lujun 已提交
599

D
DuYao 已提交
600 601 602 603
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.

        **bias** (Parameter): the learnable bias of this layer.
604

L
lujun 已提交
605
    Returns:
D
DuYao 已提交
606
        None.
L
lujun 已提交
607 608 609 610 611 612 613 614

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

615 616 617 618 619 620
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
621
                    num_channels=3,
622 623 624 625 626
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
627 628
    """

L
lujun 已提交
629
    def __init__(self,
630
                 num_channels,
L
lujun 已提交
631
                 num_filters,
632
                 filter_size,
L
lujun 已提交
633 634 635 636 637 638 639 640
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
641 642
                 dtype='float32'):
        super(Conv3DTranspose, self).__init__()
L
lujun 已提交
643 644 645 646 647 648 649
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
650
        self._num_channels = num_channels
L
lujun 已提交
651 652 653 654 655 656
        self._filter_size = filter_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act
657
        self._dtype = dtype
L
lujun 已提交
658

659 660
        self._filter_size = utils.convert_to_list(
            self._filter_size, 3, 'conv3d_transpose.filter_size')
L
lujun 已提交
661

662 663
        filter_shape = [self._num_channels, self._num_filters // self._groups
                        ] + self._filter_size
L
lujun 已提交
664 665 666 667 668 669 670 671 672
        self._img_filter = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    @property
    def weight(self):
        return self._img_filter

    @weight.setter
    def weight(self, value):
        self._img_filter = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
721
class Pool2D(layers.Layer):
722
    """
723 724 725 726 727
    This interface is used to construct a callable object of the ``Pool2D`` class.
    For more details, refer to code examples.
    The pooling2d operation calculates the output based on the input, pool_type and pool_size, pool_stride,
    pool_padding parameters.Input and output are in NCHW format, where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
L
lujun 已提交
728 729
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
730

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
    Example:

        - Input:

          Input shape: :math:`(N, C, H_{in}, W_{in})`

        - Output:

          Output shape: :math:`(N, C, H_{out}, W_{out})`

        If ``ceil_mode`` = False:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1

        If ``ceil_mode`` = True:

        .. math::

            H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1 \\\\
            W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1

        If ``exclusive`` = False:

        .. math::

            hstart &= i * strides[0] - paddings[0] \\\\
            hend   &= hstart + ksize[0] \\\\
            wstart &= j * strides[1] - paddings[1] \\\\
            wend   &= wstart + ksize[1] \\\\
            Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}

        If ``exclusive`` = True:

        .. math::

            hstart &= max(0, i * strides[0] - paddings[0])\\\\
            hend &= min(H, hstart + ksize[0]) \\\\
            wstart &= max(0, j * strides[1] - paddings[1]) \\\\
            wend & = min(W, wstart + ksize[1]) \\\\
            Output(i ,j) & = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}

775
    Parameters:
776
        pool_size (int or list or tuple, optional): The pool kernel size. If pool kernel size is a tuple or list,
777
            it must contain two integers, (pool_size_Height, pool_size_Width).
778 779 780 781
            Otherwise, the pool kernel size will be a square of an int. Default: -1.
        pool_type(str, optional) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. 
            Default: max.
        pool_stride (int or list or tuple, optional): The pool stride size. If pool stride size is a tuple or list,
L
lujun 已提交
782
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
783 784 785
            the pool stride size will be a square of an int. Default: 1.
        pool_padding (int or list or tuple, optional): The padding size for pooling operation. 
            If ``pool_padding`` is a tuple,
786
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
787 788 789 790 791 792 793
            Otherwise, the padding size for pooling operation will be a square of an int. Default: 0.
        global_pooling (bool, optional): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False.
        use_cudnn (bool, optional): Only used in cudnn kernel, need install cudnn. Default: True.
        ceil_mode (bool, optional): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False.
        exclusive (bool, optional): Whether to exclude padding points in average pooling mode. Default: True.
794 795

    Returns:
796
        None
797 798 799 800 801 802 803 804 805 806

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

L
lujun 已提交
807
          import paddle.fluid as fluid
808 809
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
810 811

          with fluid.dygraph.guard():
812
             data = numpy.random.random((3, 32, 32, 5)).astype('float32')
813
             pool2d = fluid.dygraph.Pool2D(pool_size=2,
814 815 816
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
817
             pool2d_res = pool2d(to_variable(data))
818 819 820

    """

M
minqiyang 已提交
821 822 823 824 825 826 827 828
    def __init__(self,
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
829
                 exclusive=True):
M
minqiyang 已提交
830 831 832 833 834 835 836 837 838 839 840 841 842
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

843
        super(Pool2D, self).__init__()
M
minqiyang 已提交
844 845 846 847 848 849 850 851 852 853 854 855 856

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
857 858
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
859 860 861
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
862
            outputs={"Out": pool_out},
M
minqiyang 已提交
863 864 865 866 867 868 869 870 871 872 873
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
874
        return pool_out
M
minqiyang 已提交
875 876


S
songyouwei 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
class Linear(layers.Layer):
    """
    Fully-connected linear transformation layer:

    .. math::

        Out = Act({XW + b})

    where :math:`X` is the input Tensor, :math:`W` and :math:`b` are weight and bias respectively.

    Different from FC layer, Linear layer takes only one ``Tensor`` input.
    The Linear layer multiplies input tensor with weight matrix and
    produces an output Tensor of shape [N, *, `output_dim`],
    where N is batch size and `*` means any number of additional dimensions.
    If ``bias_attr`` is not None, a bias variable will be created and added to the output.
    Finally, if ``act`` is not None, it will be applied to the output as well.

    Parameters:
        input_dim(int): The number of input units in this layer.
        output_dim(int): The number of output units in this layer.
        param_attr(ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr(ParamAttr or list of ParamAttr, optional): The attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of this layer. Default: None.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".

    Attributes:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter or None): the learnable bias of this layer.

    Returns:
        None

    Examples:
        .. code-block:: python

          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Linear
          import numpy as np

          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
          with fluid.dygraph.guard():
              linear = Linear(32, 64)
              data = to_variable(data)
              res = linear(data)  # [30, 10, 64]
    """

    def __init__(self,
                 input_dim,
                 output_dim,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 dtype="float32"):
        super(Linear, self).__init__()
        self._act = act
        self._dtype = dtype
        self.weight = self.create_parameter(
            shape=[input_dim, output_dim],
            attr=param_attr,
            dtype=dtype,
            is_bias=False)
        self.bias = self.create_parameter(
            shape=[output_dim], attr=bias_attr, dtype=dtype, is_bias=True)

    def forward(self, input):
        tmp = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="matmul",
            inputs={"X": input,
                    "Y": self.weight},
            outputs={"Out": tmp},
            attrs={
                "transpose_X": False,
                "transpose_Y": False,
                "alpha": 1,
            })
        if self.bias:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [tmp],
                        'Y': [self.bias]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': len(input.shape) - 1})
        else:
            pre_activation = tmp
        return self._helper.append_activation(pre_activation, act=self._act)


X
Xin Pan 已提交
972
class FC(layers.Layer):
973
    """
974 975 976 977
    This interface is used to construct a callable object of the ``FC`` class.
    For more details, refer to code examples.
    It creates a fully connected layer in the network. It can take
    one or multiple ``Tensor`` as its inputs. It creates a Variable called weights for each input tensor,
978 979
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
980 981 982
    with its corresponding weight to produce an output Tensor with shape [N, `size`],
    where N is batch size. If multiple input tensors are given, the results of
    multiple output tensors with shape [N, `size`] will be summed up. If ``bias_attr``
983
    is not None, a bias variable will be created and added to the output.
984
    Finally, if ``act`` is not None, it will be applied to the output as well.
985

986
    When the input is single ``Tensor`` :
987 988 989 990 991

    .. math::

        Out = Act({XW + b})

992
    When the input are multiple ``Tensor`` :
993 994 995 996 997 998 999

    .. math::

        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})

    In the above equation:

1000 1001
    * :math:`N`: Number of the input. N equals to len(input) if input is list of ``Tensor`` .
    * :math:`X_i`: The i-th input ``Tensor`` .
1002 1003 1004
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
    * :math:`b`: The bias parameter created by this layer (if needed).
    * :math:`Act`: The activation function.
1005
    * :math:`Out`: The output ``Tensor`` .
1006 1007 1008 1009 1010 1011

    See below for an example.

    .. code-block:: text

        Given:
1012 1013
            data_1.data = [[[0.1, 0.2]]]
            data_1.shape = (1, 1, 2) # 1 is batch_size
1014

1015 1016
            data_2.data = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3) # 1 is batch_size
1017

1018 1019
            fc = FC("fc", 2, num_flatten_dims=2)
            out = fc(input=[data_1, data_2])
1020 1021

        Then:
1022 1023
            out.data = [[[0.182996 -0.474117]]]
            out.shape = (1, 1, 2)
1024

1025
    Parameters:
L
lujun 已提交
1026
        name_scope(str): The name of this class.
1027
        size(int): The number of output units in this layer.
1028 1029
        num_flatten_dims (int, optional): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multi-dimension tensor will first be flattened
1030 1031 1032 1033 1034 1035
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
L
lujun 已提交
1036
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1
1037 1038 1039
        param_attr (ParamAttr or list of ParamAttr, optional): The parameter attribute for learnable
            weights(Parameter) of this layer. Default: None.
        bias_attr (ParamAttr or list of ParamAttr, optional): The attribute for the bias
1040 1041
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
1042 1043 1044
        act (str, optional): Activation to be applied to the output of this layer. Default: None.
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default: False.
        dtype(str, optional): Dtype used for weight, it can be "float32" or "float64". Default: "float32".
1045

1046 1047
    Attribute:
        **weight** (list of Parameter): the learnable weights of this layer.
1048

1049
        **bias** (Parameter or None): the learnable bias of this layer.
1050

1051 1052 1053
    Returns:
        None
    
1054 1055
    Examples:
        .. code-block:: python
L
lujun 已提交
1056

1057 1058 1059 1060
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import FC
          import numpy as np
L
lujun 已提交
1061

1062
          data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
1063
          with fluid.dygraph.guard():
1064 1065 1066
              fc = FC("fc", 64, num_flatten_dims=2)
              data = to_variable(data)
              conv = fc(data)
1067 1068 1069

    """

M
minqiyang 已提交
1070
    def __init__(self,
X
Xin Pan 已提交
1071
                 name_scope,
M
minqiyang 已提交
1072
                 size,
1073
                 num_flatten_dims=1,
M
minqiyang 已提交
1074
                 param_attr=None,
M
minqiyang 已提交
1075
                 bias_attr=None,
1076 1077 1078
                 act=None,
                 is_test=False,
                 dtype="float32"):
1079
        super(FC, self).__init__(name_scope, dtype)
M
minqiyang 已提交
1080

M
minqiyang 已提交
1081
        self._size = size
M
minqiyang 已提交
1082 1083
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
1084
        self._param_attr = param_attr
1085
        self._bias_attr = bias_attr
1086
        self._act = act
1087 1088
        self.__w = list()

1089
    def _build_once(self, input):
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            input_shape = inp.shape

            param_shape = [
                reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:],
                       1)
            ] + [self._size]
            self.__w.append(
                self.add_parameter(
                    '_w%d' % i,
                    self.create_parameter(
                        attr=param,
                        shape=param_shape,
                        dtype=self._dtype,
                        is_bias=False)))
            i += 1

        size = list([self._size])
        self._b = self.create_parameter(
            attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True)
M
minqiyang 已提交
1112

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
    # TODO(songyouwei): We should remove _w property
    @property
    def _w(self, i=0):
        return self.__w[i]

    @_w.setter
    def _w(self, value, i=0):
        assert isinstance(self.__w[i], Variable)
        self.__w[i].set_value(value)

    @property
    def weight(self):
        if len(self.__w) > 1:
            return self.__w
        else:
            return self.__w[0]

    @weight.setter
    def weight(self, value):
        if len(self.__w) == 1:
            self.__w[0] = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

M
minqiyang 已提交
1143
    def forward(self, input):
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        mul_results = list()
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            tmp = self._helper.create_variable_for_type_inference(self._dtype)
            self._helper.append_op(
                type="mul",
                inputs={"X": inp,
                        "Y": self.__w[i]},
                outputs={"Out": tmp},
                attrs={
                    "x_num_col_dims": self._num_flatten_dims,
                    "y_num_col_dims": 1
                })
            i += 1
            mul_results.append(tmp)

        if len(mul_results) == 1:
            pre_bias = mul_results[0]
        else:
            pre_bias = self._helper.create_variable_for_type_inference(
                self._dtype)
            self._helper.append_op(
                type="sum",
                inputs={"X": mul_results},
                outputs={"Out": pre_bias},
                attrs={"use_mkldnn": False})
M
minqiyang 已提交
1171

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
L
lujun 已提交
1183
        # Currently, we don't support inplace in dygraph mode
1184
        return self._helper.append_activation(pre_activation, act=self._act)
M
minqiyang 已提交
1185 1186 1187


class BatchNorm(layers.Layer):
1188
    """
1189 1190 1191 1192 1193
    This interface is used to construct a callable object of the ``BatchNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Batch Normalization Layer and can be used 
    as a normalizer function for conv2d and fully connected operations.
    The data is normalized by the mean and variance of the channel based on the current batch data.
1194 1195 1196 1197
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1198 1199 1200
    When use_global_stats = False, the :math:`\\mu_{\\beta}` 
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of one mini-batch.
    Calculated as follows:
1201 1202 1203 1204 1205 1206 1207 1208

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\

1209 1210
    - :math:`x` : mini-batch data
    - :math:`m` : the size of the mini-batch data
1211 1212 1213

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
1214 1215 1216 1217 1218 1219
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global variance \\
1220

1221 1222
    The normalization function formula is as follows:
 
1223 1224 1225
    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
1226 1227 1228 1229 1230 1231
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    - :math:`\\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\\gamma` : trainable proportional parameter
    - :math:`\\beta` : trainable deviation parameter
1232

1233
    Parameters:
1234 1235 1236 1237 1238 1239
        num_channels(int): Indicate the number of channels of the input ``Tensor``.
        act(str, optional): Activation to be applied to the output of batch normalizaiton. Default: None.
        is_test (bool, optional): A flag indicating whether it is in test phrase or not. Default: False.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        param_attr(ParamAttr, optional): The parameter attribute for Parameter `scale`
1240 1241 1242
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1243
        bias_attr(ParamAttr, optional): The parameter attribute for the bias of batch_norm.
1244 1245 1246
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1247 1248 1249 1250 1251 1252
        dtype(str, optional): Indicate the data type of the input ``Tensor``,
             which can be float32 or float64. Default: float32.
        data_layout(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
        in_place(bool, optional): Make the input and output of batch norm reuse memory. Default: False.
        moving_mean_name(str, optional): The name of moving_mean which store the global Mean. Default: None.
        moving_variance_name(str, optional): The name of the moving_variance which store the global Variance. Default: None.
1253 1254
        do_model_average_for_mean_and_var(bool, optional): Whether parameter mean and variance should do model
            average when model average is enabled. Default: True.
1255
        use_global_stats(bool, optional): Whether to use global mean and
1256 1257 1258
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1259 1260 1261 1262
            and variance are also used during train period. Default: False.
        trainable_statistics(bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
1263 1264

    Returns:
1265
        None
1266 1267 1268

    Examples:
        .. code-block:: python
L
lujun 已提交
1269 1270

          import paddle.fluid as fluid
1271 1272
          from paddle.fluid.dygraph.base import to_variable
          import numpy as np
L
lujun 已提交
1273

1274
          x = np.random.random(size=(3, 10, 3, 7)).astype('float32')
L
lujun 已提交
1275
          with fluid.dygraph.guard():
1276
              x = to_variable(x)
1277
              batch_norm = fluid.BatchNorm(10)
1278
              hidden1 = batch_norm(x)
1279 1280
    """

M
minqiyang 已提交
1281 1282 1283 1284 1285 1286 1287 1288
    def __init__(self,
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1289
                 dtype='float32',
M
minqiyang 已提交
1290 1291 1292 1293
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
1294
                 do_model_average_for_mean_and_var=True,
1295 1296
                 use_global_stats=False,
                 trainable_statistics=False):
1297
        super(BatchNorm, self).__init__()
1298
        self._param_attr = param_attr
1299
        self._bias_attr = bias_attr
1300
        self._act = act
M
minqiyang 已提交
1301 1302 1303

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1304 1305
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1306 1307 1308 1309 1310 1311
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1312 1313
        self._scale = self.create_parameter(
            attr=self._param_attr,
M
minqiyang 已提交
1314 1315 1316
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1317
        if use_global_stats and self._param_attr.learning_rate == 0.:
1318
            self._scale.stop_gradient = True
M
minqiyang 已提交
1319

1320
        self._bias = self.create_parameter(
1321
            attr=self._bias_attr,
M
minqiyang 已提交
1322 1323 1324
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1325
        if use_global_stats and self._param_attr.learning_rate == 0.:
1326
            self._bias.stop_gradient = True
M
minqiyang 已提交
1327

1328
        self._mean = self.create_parameter(
M
minqiyang 已提交
1329 1330 1331 1332 1333 1334 1335
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1336
        self._mean.stop_gradient = True
M
minqiyang 已提交
1337

1338
        self._variance = self.create_parameter(
M
minqiyang 已提交
1339 1340 1341 1342 1343 1344 1345
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1346
        self._variance.stop_gradient = True
M
minqiyang 已提交
1347 1348

        self._in_place = in_place
1349
        self._data_layout = data_layout
M
minqiyang 已提交
1350 1351 1352
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
1353
        self._fuse_with_relu = False
M
minqiyang 已提交
1354
        self._use_global_stats = use_global_stats
1355
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1356 1357 1358 1359 1360 1361 1362 1363 1364

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1365
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1366
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1367
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1368
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1369
            self._dtype)
M
minqiyang 已提交
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
                "Scale": self._scale,
                "Bias": self._bias,
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
1391
                "data_layout": self._data_layout,
M
minqiyang 已提交
1392 1393
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
1394 1395
                "use_global_stats": self._use_global_stats,
                "trainable_statistics": self._trainable_statistics
M
minqiyang 已提交
1396 1397
            })

L
lujun 已提交
1398
        # Currently, we don't support inplace in dygraph mode
1399
        return self._helper.append_activation(batch_norm_out, self._act)
1400 1401


1402 1403 1404 1405
class Embedding(layers.Layer):
    """
    **Embedding Layer**

Z
zhongpu 已提交
1406 1407 1408 1409 1410 1411
    This interface is used to construct a callable object of the ``Embedding`` class.
    For specific usage, refer to code examples. It implements the function of the Embedding Layer.
    This layer is used to lookup embeddings vector of ids provided by :attr:`input` .
    It automatically constructs a 2D embedding matrix based on the
    input :attr:`size` (vocab_size, emb_size) and :attr:`dtype` .

1412 1413
    The shape of output Tensor is generated by appending an emb_size dimension to the
    last dimension of the input Tensor shape.
Z
zhongpu 已提交
1414

1415
    **Note:** The id in :attr:`input` must satisfy :math:`0 =< id < size[0]` ,
Z
zhongpu 已提交
1416 1417 1418 1419 1420 1421 1422
    otherwise the program will throw an exception and exit.

    .. code-block:: text

        Case 1:

        input is a Tensor. padding_idx = -1
1423 1424
            input.data = [[1, 3], [2, 4], [4, 127]
            input.shape = [3, 2]
Z
zhongpu 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
        Given size = [128, 16]
        output is a Tensor:
            out.shape = [3, 2, 16]
            out.data = [[[0.129435295, 0.244512452, ..., 0.436322452],
                        [0.345421456, 0.524563927, ..., 0.144534654]],

                        [[0.345249859, 0.124939536, ..., 0.194353745],
                        [0.945345345, 0.435394634, ..., 0.435345365]],
                        
                        [[0.945345345, 0.435394634, ..., 0.435345365],
                        [0.0,         0.0,         ..., 0.0        ]]]  # padding data
        The input padding_idx is less than 0, it is automatically converted to padding_idx = -1 + 128 = 127
        It will pad all-zero data when ids is 127.
1438

1439
    Parameters:
L
lujun 已提交
1440 1441
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
Z
zhongpu 已提交
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
        is_sparse(bool): The flag indicating whether to use sparse update. This parameter only
            affects the performance of the backwards gradient update. It is recommended to set 
            True because sparse update is faster. But some optimizer does not support sparse update,
            such as :ref:`api_fluid_optimizer_AdadeltaOptimizer` , :ref:`api_fluid_optimizer_AdamaxOptimizer` , 
            :ref:`api_fluid_optimizer_DecayedAdagradOptimizer` , :ref:`api_fluid_optimizer_FtrlOptimizer` ,
            :ref:`api_fluid_optimizer_LambOptimizer` and :ref:`api_fluid_optimizer_LarsMomentumOptimizer` .
            In these case, is_sparse must be False. Default: False.
        is_distributed(bool): Whether to store the embedding matrix in a distributed manner. Only used
            in multi-machine distributed CPU training. Default: False.
        padding_idx(int|long|None): padding_idx needs to be in the interval [-vocab_size, vocab_size). 
            If :math:`padding\_idx < 0`, the :math:`padding\_idx` will automatically be converted
            to :math:`vocab\_size + padding\_idx` . It will output all-zero padding data whenever lookup
            encounters :math:`padding\_idx` in id. And the padding data will not be updated while training.
            If set None, it makes no effect to output. Default: None.
        param_attr(ParamAttr): To specify the weight parameter property. Default: None, which means the
            default weight parameter property is used. See usage for details in :ref:`api_fluid_ParamAttr` . In addition,
            user-defined or pre-trained word vectors can be loaded with the :attr:`param_attr` parameter. 
            The local word vector needs to be transformed into numpy format, and the shape of local word
            vector shoud be consistent with :attr:`size` . Then :ref:`api_fluid_initializer_NumpyArrayInitializer`
            is used to load custom or pre-trained word vectors. See code example 2 for details.
        dtype(np.dtype|core.VarDesc.VarType|str): It refers to the data type of output Tensor.
            It must be "float32" or "float64". Default: "float32".
1464

Z
zhongpu 已提交
1465 1466
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1467

1468
    Returns:
Z
zhongpu 已提交
1469
        Variable: Embedding Tensor or LoDTensor mapped by input. The data type is the same as :attr:`dtype` .
1470 1471

    Examples:
1472

1473 1474
        .. code-block:: python

L
lujun 已提交
1475 1476 1477 1478
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

Z
zhongpu 已提交
1479
          # example 1
1480 1481
          inp_word = np.array([[2, 3, 5], [4, 2, 1]]).astype('int64')
          inp_word.shape  # [2, 3]
1482 1483
          dict_size = 20
          with fluid.dygraph.guard():
L
lujun 已提交
1484
              emb = fluid.dygraph.Embedding(
1485 1486 1487
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
L
lujun 已提交
1488
              static_rlt3 = emb(base.to_variable(inp_word))
1489
              static_rlt3.shape  # [2, 3, 32]
Z
zhongpu 已提交
1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503

          # example 2: load custom or pre-trained word vectors
          weight_data = np.random.random(size=(128, 100))  # word vectors with numpy format
          w_param_attrs = fluid.ParamAttr(
              name="emb_weight",
              learning_rate=0.5,
              initializer=fluid.initializer.NumpyArrayInitializer(weight_data),
              trainable=True)
          with fluid.dygraph.guard():
              emb = fluid.dygraph.Embedding(
                  size=[128, 100],
                  param_attr= w_param_attrs,
                  is_sparse=False)
              static_rlt3 = emb(base.to_variable(inp_word))          
1504 1505
    """

1506 1507 1508 1509 1510 1511 1512
    def __init__(self,
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1513
        super(Embedding, self).__init__()
1514 1515 1516 1517
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1518
            size[0] + padding_idx)
1519 1520 1521

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1522
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1523 1524 1525
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1526
        self._w = self.create_parameter(
1527 1528 1529 1530 1531
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

1532 1533 1534 1535 1536 1537 1538 1539
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

1540 1541 1542
    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
1543
            type='lookup_table_v2',
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
            inputs={'Ids': input,
                    'W': self._w},
            outputs={'Out': out},
            attrs={
                'is_sparse': self._is_sparse,
                'is_distributed': self._is_distributed,
                'remote_prefetch': self._remote_prefetch,
                'padding_idx': self._padding_idx
            })

        return out
M
minqiyang 已提交
1555 1556


1557
class LayerNorm(layers.Layer):
1558
    """
1559 1560 1561
    This interface is used to construct a callable object of the ``LayerNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
1562
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1563

1564
    The formula is as follows:
1565

1566
    ..  math::
1567

1568
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} x_i
1569

1570
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}{(x_i - \\mu)^2} + \\epsilon}
1571

1572
        y & = f(\\frac{g}{\\sigma}(x - \\mu) + b)
1573

1574 1575 1576 1577 1578
    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
    - :math:`\\epsilon`: the small value added to the variance to prevent division by zero.
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.
1579

1580
    Parameters:
1581 1582 1583 1584
        normalized_shape(int or list or tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
1585
        scale(bool, optional): Whether to learn the adaptive gain :math:`g` after
L
lujun 已提交
1586
            normalization. Default: True.
1587
        shift(bool, optional): Whether to learn the adaptive bias :math:`b` after
L
lujun 已提交
1588
            normalization. Default: True.
1589
        epsilon(float, optional): The small value added to the variance to prevent
L
lujun 已提交
1590
            division by zero. Default: 1e-05.
1591
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
1592 1593 1594
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
L
lujun 已提交
1595
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1596
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
1597 1598 1599
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
L
lujun 已提交
1600
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
1601
        act(str, optional): Activation to be applied to the output of layer normalizaiton.
L
lujun 已提交
1602
                  Default: None.
1603 1604
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".

1605
    Returns:
1606
        None
1607

1608
    Examples:
1609

1610 1611 1612
        .. code-block:: python

          import paddle.fluid as fluid
1613
          from paddle.fluid.dygraph.base import to_variable
1614 1615
          import numpy

1616
          x = numpy.random.random((3, 32, 32)).astype('float32')
1617
          with fluid.dygraph.guard():
1618
              x = to_variable(x)
1619
              layerNorm = fluid.LayerNorm([32, 32])
1620
              ret = layerNorm(x)
1621

1622
    """
1623

1624
    def __init__(self,
1625
                 normalized_shape,
1626 1627 1628 1629 1630
                 scale=True,
                 shift=True,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1631 1632 1633 1634 1635 1636
                 act=None,
                 dtype='float32'):
        super(LayerNorm, self).__init__()
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]
        self._normalized_shape = list(normalized_shape)
1637 1638 1639 1640 1641 1642
        self._scale = scale
        self._shift = shift
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
1643 1644
        self._dtype = dtype
        param_shape = [np.prod(self._normalized_shape)]
1645 1646 1647 1648 1649 1650
        if self._scale:
            self._scale_w = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
1651 1652 1653 1654
        else:
            if self._param_attr:
                logging.warn("param_attr are only avaliable with scale is True")

1655 1656 1657 1658 1659 1660 1661
        if self._shift:
            assert self._bias_attr is not False
            self._bias_w = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)
1662 1663 1664
        else:
            if self._bias_attr:
                logging.warn("bias_attr are only avaliable with shift is True")
1665 1666

    def forward(self, input):
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
        input_shape = list(input.shape)
        input_ndim = len(input_shape)
        normalized_ndim = len(self._normalized_shape)
        self._begin_norm_axis = input_ndim - normalized_ndim
        if input_ndim < normalized_ndim or input_shape[
                self._begin_norm_axis:] != self._normalized_shape:
            str_normalized_shape = str(self._normalized_shape)
            raise ValueError(
                'Given normalized_shape is ' + str_normalized_shape +
                ', expected input with shape [*, ' + str_normalized_shape[
                    1:] + ', but got input shape ' + str(input_shape))
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
        inputs = dict()
        inputs['X'] = input
        if self._scale:
            inputs['Scale'] = self._scale_w
        if self._shift:
            inputs['Bias'] = self._bias_w
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

1705
        return self._helper.append_activation(layer_norm_out, act=self._act)
1706 1707


M
minqiyang 已提交
1708 1709 1710
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**
D
DuYao 已提交
1711 1712 1713 1714 1715
    
    It creates a callable object from GRUUnit class.
    If origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
M
minqiyang 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

D
DuYao 已提交
1726
    If origin_mode is False, then the equation of a gru step is from paper
M
minqiyang 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

1752
    Parameters:
L
lujun 已提交
1753
        size (int): The input dimension value.
D
DuYao 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
            hidden-hidden weight matrix. 
            
            **Note**:
    
                1. The shape of the weight matrix is :math:`[T, 3*D]`, where D is the hidden size.
                2. All elements in the weight matrix can be divided into two parts. The first 
                   part are weights of the update gate and reset gate with shape :math:`[D, 2*D]`, 
                   and the second part are weights for candidate hidden state with shape :math:`[D, D]`.
M
minqiyang 已提交
1763 1764 1765 1766


            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
D
DuYao 已提交
1767 1768 1769 1770
            is not set, the parameter is initialized with Xavier. The default 
            value is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`[1, 3*D]` concatenates
M
minqiyang 已提交
1771 1772 1773 1774 1775
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
D
DuYao 已提交
1776
            is initialized zero. The default value is None.
L
lujun 已提交
1777
        activation (str): The activation type for cell (actNode).
D
DuYao 已提交
1778
                             The default value is 'tanh'.
L
lujun 已提交
1779
        gate_activation (str): The activation type for gates (actGate).
D
DuYao 已提交
1780 1781 1782
                                  The default value is 'sigmoid'.
        dtype(str): The dtype of the layers. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
M
minqiyang 已提交
1783

D
DuYao 已提交
1784 1785 1786 1787
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
1788

M
minqiyang 已提交
1789
    Returns:
D
DuYao 已提交
1790 1791 1792 1793
        tuple: The hidden value, reset-hidden value and gate values. The hidden value
        is a 2-D tensor with shape  :math:`[T, D]` . The reset-hidden value is a
        2-D tensor with shape  :math:`[T, D]` . The gate value is a 2-D tensor with 
        shape  :math:`[T, 3*D]`.
L
lujun 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

D
DuYao 已提交
1807
          input = numpy.random.rand(T, 3 * D).astype('float32')
L
lujun 已提交
1808 1809 1810
          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
1811
              gru = fluid.dygraph.GRUUnit(size=D * 3)
L
lujun 已提交
1812 1813 1814
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
    """

    def __init__(self,
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1825
        super(GRUUnit, self).__init__()
1826
        self._bias_attr = bias_attr
M
minqiyang 已提交
1827 1828 1829 1830 1831
        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1832 1833
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1834

M
minqiyang 已提交
1835
        self._dtype = dtype
M
minqiyang 已提交
1836 1837
        size = size // 3
        # create weight
M
minqiyang 已提交
1838 1839
        self._weight = self.create_parameter(
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1840 1841

        # create bias
M
minqiyang 已提交
1842
        bias_size = [1, 3 * size]
1843
        self._bias_size = bias_size
M
minqiyang 已提交
1844 1845
        self._bias = self.create_parameter(
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1846

1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
    @property
    def weight(self):
        return self._weight

    @weight.setter
    def weight(self, value):
        self._weight = value

    @property
    def bias(self):
        return self._bias

    @bias.setter
    def bias(self, value):
        self._bias = value

M
minqiyang 已提交
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872
    def forward(self, input, hidden):
        inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': self._weight}
        if self._bias:
            inputs['Bias'] = self._bias

        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1882 1883
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1884 1885 1886
            })

        return updated_hidden, reset_hidden_pre, gate
1887 1888 1889 1890


class NCE(layers.Layer):
    """
1891 1892 1893 1894 1895
    This interface is used to construct a callable object of the ``NCE`` class.
    For more details, refer to code examples.
    It implements the function of the ``NCE`` loss function.
    By default this function uses a uniform distribution for sampling, and it
    compute and return the noise-contrastive estimation training loss. See
1896
    `Noise-contrastive estimation: A new estimation principle for unnormalized statistical models <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`_ .
1897

1898
    Parameters:
1899 1900
        num_total_classes (int): Total number of classes in all samples.
        dim (int): Dimension of input (possibly embedding dim).
1901
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
1902 1903 1904
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
1905
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of nce.
1906 1907 1908 1909
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1910 1911
        num_neg_samples (int, optional): The number of negative classes. The default value is 10.
        sampler (str, optional): The sampler used to sample class from negtive classes.
1912 1913
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1914
        custom_dist (float[], optional): A float[] with size=num_total_classes.
1915
                       It is used when sampler is set to 'custom_dist'.
1916
                       custom_dist[i] is the probability of i-th class to be sampled.
L
lujun 已提交
1917
                       Default: None.
1918 1919
        seed (int, optional): The seed used in sampler. Default: 0.
        is_sparse(bool, optional): The flag indicating whether to use sparse update. If is_sparse is True, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1920
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
1921

1922 1923
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
1924

1925 1926
        **bias** (Parameter or None): the learnable bias of this layer.
    
1927
    Returns:
1928
        None
1929 1930 1931 1932

    Examples:
        .. code-block:: python

1933 1934 1935
            import numpy as np
            import paddle.fluid as fluid

1936
            window_size = 5
1937 1938
            dict_size = 20
            label_word = int(window_size // 2) + 1
1939
            inp_word = np.array([[1], [2], [3], [4], [5]]).astype('int64')
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
1961
                nce = fluid.NCE(
1962
                             num_total_classes=dict_size,
1963
                             dim=embs3.shape[1],
1964 1965 1966 1967 1968 1969 1970
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

1971 1972
                wl = fluid.layers.unsqueeze(words[label_word], axes=[0])
                nce_loss3 = nce(embs3, wl)
1973 1974 1975 1976 1977

    """

    def __init__(self,
                 num_total_classes,
1978
                 dim,
1979
                 sample_weight=None,
1980 1981 1982 1983 1984 1985
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
1986 1987 1988
                 is_sparse=False,
                 dtype='float32'):
        super(NCE, self).__init__()
1989 1990 1991
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes
1992
        self._dtype = dtype
1993
        self._inputs = dict()
1994
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
2086
            dtype=self._dtype)
2087 2088 2089 2090 2091
        if self._bias_attr:
            self._b = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
2092
                dtype=self._dtype)
2093 2094 2095
            self._inputs['Bias'] = self._b
        self._inputs['Weight'] = self._w

2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

    @property
    def bias(self):
        return self._b

    @bias.setter
    def bias(self, value):
        self._b = value

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140
    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
2141 2142 2143 2144
    This interface is used to construct a callable object of the ``PRelu`` class.
    For more details, refer to code examples.
    It implements three activation methods of the ``PRelu`` activation function.

2145 2146 2147 2148 2149
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

2150
    Parameters:
L
lujun 已提交
2151
        mode (str): The mode for weight sharing. It supports all, channel
2152 2153 2154
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
2155 2156
        input_shape (list or tuple, optional): The shape of input.
          This parameter is required when mode is not "all". Default: None.
2157 2158
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
          weight (alpha). Default: None.
2159
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2160

2161 2162 2163
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.
    
2164
    Returns:
2165
        None
2166 2167 2168 2169 2170

    Examples:

        .. code-block:: python

L
lujun 已提交
2171
          import paddle.fluid as fluid
2172
          from paddle.fluid.dygraph.base import to_variable
L
lujun 已提交
2173 2174 2175 2176
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
2177
              inp_np = to_variable(inp_np)
L
lujun 已提交
2178 2179 2180
              mode = 'channel'
              prelu = fluid.PRelu(
                 mode=mode,
2181
                 input_shape=inp_np.shape,
L
lujun 已提交
2182
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
2183
              dy_rlt = prelu(inp_np)
L
lujun 已提交
2184

2185 2186
    """

2187 2188 2189
    def __init__(self, mode, input_shape=None, param_attr=None,
                 dtype='float32'):
        super(PRelu, self).__init__()
2190 2191 2192 2193
        self._mode = mode
        self._param_attr = param_attr
        if self._mode not in ['all', 'channel', 'element']:
            raise ValueError('mode should be one of all, channel, element.')
2194
        self._dtype = dtype
2195
        self._alpha_shape = [1]
2196 2197 2198 2199 2200 2201 2202
        if mode is not 'all':
            assert input_shape is not None
            input_shape = list(input_shape)
            if self._mode == 'channel':
                self._alpha_shape = [1, input_shape[1], 1, 1]
            elif self._mode == 'element':
                self._alpha_shape = input_shape
2203 2204 2205 2206 2207 2208 2209
        self._alpha = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

2210 2211 2212 2213 2214 2215 2216 2217
    @property
    def weight(self):
        return self._alpha

    @weight.setter
    def weight(self, value):
        self._alpha = value

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
    def forward(self, input):

        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
                    'Alpha': self._alpha},
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
D
DuYao 已提交
2245
     - :math:`y^\mathrm{T}`: the transpose of :math:`y`.
2246

2247
    Parameters:
2248 2249 2250 2251 2252
       input1_dim (int): The dimension of each first input.
       input2_dim (int): The dimension of each second input.
       output_dim (int): The dimension of output of this layer.
       name (str, optional): The default value is None. Normally there is no need for user
           to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
D
DuYao 已提交
2253 2254 2255 2256
       act (str, optional): Activation to be applied to the output of this layer. The default value is None.
       param_attr (ParamAttr, optional): The parameter attribute for the learnable w, parameters/weights of 
           this layer. The default value is None.
       bias_attr (ParamAttr, optional): The parameter attribute for the bias
2257
           of this layer. If it is set to False, no bias will be added to the output units.
D
DuYao 已提交
2258
           If it is set to None, the bias is initialized zero. The default value is None.
2259
       dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2260

D
DuYao 已提交
2261 2262 2263 2264
    Attribute:
        **weight** (Parameter): the learnable weights of this layer.

        **bias** (Parameter): the learnable bias of this layer.
2265

2266 2267 2268 2269 2270 2271
    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

2272 2273 2274 2275 2276 2277 2278
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
2279
                    input1_dim=5, input2_dim=4, output_dim=1000)
2280 2281
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
2282 2283 2284
    """

    def __init__(self,
2285 2286 2287
                 input1_dim,
                 input2_dim,
                 output_dim,
2288 2289 2290
                 name=None,
                 act=None,
                 param_attr=None,
2291 2292 2293
                 bias_attr=None,
                 dtype='float32'):
        super(BilinearTensorProduct, self).__init__()
2294 2295 2296 2297
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._name = name
2298 2299 2300
        self._input1_dim = input1_dim
        self._input2_dim = input2_dim
        self._output_dim = output_dim
2301
        self._inputs = dict()
2302
        self._dtype = dtype
2303

2304
        param_shape = [self._output_dim, self._input1_dim, self._input2_dim]
2305 2306 2307 2308 2309
        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)
2310
        bias_size = [1, self._output_dim]
2311 2312 2313 2314 2315
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=bias_size,
            dtype=self._dtype,
            is_bias=True)
2316

2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
    @property
    def weight(self):
        return self._w

    @weight.setter
    def weight(self, value):
        self._w = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

2333 2334
    def forward(self, x, y):
        self._inputs = {"X": x, "Y": y, "Weight": self._w}
2335 2336
        if self._bias_param:
            self._inputs["Bias"] = self._bias_param
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
2351
        return self._helper.append_activation(out, act=self._act)
2352 2353 2354 2355


class Conv2DTranspose(layers.Layer):
    """
2356 2357
    This interface is used to construct a callable object of the ``Conv2DTranspose`` class.
    For more details, refer to code examples.
2358
    The convolution2D transpose layer calculates the output based on the input,
2359 2360 2361
    filter, and dilations, strides, paddings. Input and output
    are in NCHW format. Where N is batch size, C is the number of feature map,
    H is the height of the feature map, and W is the width of the feature map.
2362 2363
    Filter's shape is [MCHW] , where M is the number of input feature map,
    C is the number of output feature map, H is the height of the filter,
2364 2365
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input feature map divided by the groups.
2366 2367 2368
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
2369 2370
    The details of convolution transpose layer, please refer to the following explanation and references
    `conv2dtranspose <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_ .
2371 2372 2373 2374 2375 2376 2377 2378 2379

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

2380 2381
    * :math:`X`: Input value, a ``Tensor`` with NCHW format.
    * :math:`W`: Filter value, a ``Tensor`` with shape [MCHW] .
2382
    * :math:`\\ast`: Convolution operation.
2383
    * :math:`b`: Bias value, a 2-D ``Tensor`` with shape [M, 1].
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

2408
    Parameters:
2409
        num_channels(int): The number of channels in the input image.
2410
        num_filters(int): The number of the filter. It is as same as the output
2411
            feature map.
2412 2413 2414
        filter_size(int or tuple): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
2415
        output_size(int or tuple, optional): The output image size. If output size is a
2416 2417 2418
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
L
lujun 已提交
2419
            should follow the formula above. Default: None.
2420
        padding(int or tuple, optional): The padding size. If padding is a tuple, it must
2421
            contain two integers, (padding_H, padding_W). Otherwise, the
2422 2423
            padding_H = padding_W = padding. Default: 0.
        stride(int or tuple, optional): The stride size. If stride is a tuple, it must
2424
            contain two integers, (stride_H, stride_W). Otherwise, the
2425 2426
            stride_H = stride_W = stride. Default: 1.
        dilation(int or tuple, optional): The dilation size. If dilation is a tuple, it must
2427
            contain two integers, (dilation_H, dilation_W). Otherwise, the
2428 2429
            dilation_H = dilation_W = dilation. Default: 1.
        groups(int, optional): The groups number of the Conv2d transpose layer. Inspired by
2430 2431 2432 2433
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
2434 2435
            Default: 1.
        param_attr (ParamAttr, optional): The parameter attribute for learnable weights(Parameter)
2436 2437 2438
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
2439
        bias_attr (ParamAttr or bool, optional): The attribute for the bias of conv2d_transpose.
2440 2441 2442 2443
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
2444
        use_cudnn(bool, optional): Use cudnn kernel or not, it is valid only when the cudnn
2445
            library is installed. Default: True.
2446
        act (str, optional): Activation type, if it is set to None, activation is not appended.
2447
            Default: None.
2448
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2449

2450 2451
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2452

2453
        **bias** (Parameter or None): the learnable bias of this layer.
2454

2455 2456
    Returns:
        None
2457 2458 2459 2460

    Examples:
       .. code-block:: python

2461
          import paddle.fluid as fluid
2462
          import numpy as np
2463 2464

          with fluid.dygraph.guard():
2465
              data = np.random.random((3, 32, 32, 5)).astype('float32')
2466
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
2467
                    num_channels=32, num_filters=2, filter_size=3)
2468 2469
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2470 2471 2472
    """

    def __init__(self,
2473
                 num_channels,
2474
                 num_filters,
2475
                 filter_size,
2476 2477 2478 2479 2480 2481 2482 2483
                 output_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
2484 2485 2486
                 act=None,
                 dtype='float32'):
        super(Conv2DTranspose, self).__init__()
2487 2488 2489
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
2490
        self._act = act
2491
        self._groups = groups
2492
        self._num_channels = num_channels
2493 2494 2495 2496 2497 2498 2499
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
2500
        self._dtype = dtype
2501

2502 2503 2504
        if (self._num_channels == self._groups and
                self._num_filters == self._num_channels and
                not self._use_cudnn):
2505
            self._op_type = 'depthwise_conv2d_transpose'
2506 2507
        else:
            self._op_type = 'conv2d_transpose'
2508 2509 2510 2511 2512

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

2513 2514
        self._filter_size = utils.convert_to_list(
            self._filter_size, 2, 'conv2d_transpose.filter_size')
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
2526
        filter_shape = [self._num_channels, self._num_filters // self._groups
2527 2528 2529
                        ] + self._filter_size

        self._img_filter = self.create_parameter(
2530
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
2531

2532 2533 2534 2535 2536 2537
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
    @property
    def weight(self):
        return self._img_filter

    @weight.setter
    def weight(self, value):
        self._img_filter = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'output_size': self._output_size,
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn
            })

2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        out = self._helper.append_activation(pre_act, act=self._act)
2584 2585 2586 2587 2588 2589 2590 2591 2592
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

2593
    Parameters:
L
lujun 已提交
2594
        name_scope(str): The name of this class.
2595
        num_filters (int): number of filters.
L
lujun 已提交
2596 2597 2598
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

2611 2612 2613 2614
    Attributes:
        weight (Parameter): the learnable weights of filters of this layer.
        bias (Parameter|None): the learnable bias of this layer.

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2628
        assert not in_dygraph_mode(
2629
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2630 2631 2632 2633 2634 2635 2636
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr
2637
        self._act = act
2638

2639
    def _build_once(self, input):
2640 2641 2642
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
        self._filter_param = self.create_parameter(
2643
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2644

2645 2646 2647 2648 2649 2650
        self._bias_param = self.create_parameter(
            attr=self._bias_attr,
            shape=[self._num_filters],
            dtype=self._dtype,
            is_bias=True)

2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664
    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self._filter_param],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678

        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        return self._helper.append_activation(pre_act, act=self._act)
L
lujun 已提交
2679 2680 2681


class RowConv(layers.Layer):
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

2700
    Parameters:
L
lujun 已提交
2701
        name_scope(str): The name of this class.
2702 2703 2704
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
L
lujun 已提交
2705 2706
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
2707

2708 2709 2710
    Attributes:
        weight (Parameter): the learnable weights of this layer.

2711
    Returns:
L
lujun 已提交
2712 2713
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2729 2730 2731 2732 2733
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2734
        assert not in_dygraph_mode(
2735
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2736 2737 2738 2739 2740
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2741
    def _build_once(self, input):
L
lujun 已提交
2742 2743
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2744 2745 2746 2747 2748
        self._filter_param = self.create_parameter(
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2749 2750 2751 2752 2753 2754

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2755
                    'Filter': [self._filter_param]},
L
lujun 已提交
2756 2757 2758 2759 2760 2761
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
2762 2763 2764 2765 2766 2767
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
2768
        channels(int): The number of channels of input.
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791
        groups(int): The number of groups that divided from channels.
        epsilon(float, optional): The small value added to the variance to prevent
                                  division by zero. Default: 1e-05.
        param_attr(ParamAttr, optional): The parameter attribute for the learnable
                                         scale :math:`g`. If it is set to False, no scale will be added to the output units.
                                         If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr, optional): The parameter attribute for the learnable
                                        bias :math:`b`. If it is set to False, no bias will be added to the output units.
                                        If it is set to None, the bias is initialized zero. Default: None.
        act(str, optional): Activation to be applied to the output of group normalizaiton. Default: None.
        data_layout(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy as np

          with fluid.dygraph.guard():
              x = np.random.random((8, 32, 32)).astype('float32')
2792
              groupNorm = fluid.dygraph.nn.GroupNorm(channels=32, groups=4)
2793
              ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2794 2795 2796 2797

    """

    def __init__(self,
2798
                 channels,
L
lujun 已提交
2799 2800 2801 2802 2803
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
2804 2805 2806
                 data_layout='NCHW',
                 dtype='float32'):
        super(GroupNorm, self).__init__()
L
lujun 已提交
2807 2808 2809
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
2810
        self._channels = channels
L
lujun 已提交
2811 2812
        self._groups = groups
        self._act = act
2813
        self._dtype = dtype
L
lujun 已提交
2814 2815 2816
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2817
        param_shape = [self._channels]
L
lujun 已提交
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
        if self._bias_attr:
            self._bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)

        if self._param_attr:
            self._scale = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))

    def forward(self, input):
        inputs = {'X': input}
2834
        if self._bias_attr:
L
lujun 已提交
2835
            inputs['Bias'] = self._bias
2836
        if self._param_attr:
L
lujun 已提交
2837 2838 2839
            inputs['Scale'] = self._scale

        # create output
2840
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
2862
    """
2863 2864
    This interface is used to construct a callable object of the ``SpectralNorm`` class.
    For more details, refer to code examples. It implements the function of the Spectral Normalization Layer.
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

2896
    Parameters:
2897
        weight_shape(list or tuple): The shape of weight parameter.
2898 2899 2900 2901
        dim(int, optional): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int, optional): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float, optional): The epsilon for numerical stability in calculating norms. Default: 1e-12.
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
2902
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2903 2904

    Returns:
2905
        None
2906 2907 2908 2909 2910

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
2911
            import numpy as np
2912 2913

            with fluid.dygraph.guard():
2914 2915 2916
                weight = np.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm(weight.shape, dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(weight))
2917 2918 2919

    """

2920 2921 2922 2923 2924 2925 2926
    def __init__(self,
                 weight_shape,
                 dim=0,
                 power_iters=1,
                 eps=1e-12,
                 dtype='float32'):
        super(SpectralNorm, self).__init__()
L
lujun 已提交
2927 2928 2929
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim
2930
        self._dtype = dtype
L
lujun 已提交
2931

2932 2933 2934
        self._weight_shape = list(weight_shape)
        h = self._weight_shape[self._dim]
        w = np.prod(self._weight_shape) // h
L
lujun 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966

        self.u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.u.stop_gradient = True

        self.v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.v.stop_gradient = True

    def forward(self, weight):
        inputs = {'Weight': weight, 'U': self.u, 'V': self.v}
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
2967
    """
2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
    This interface is used to construct a callable object of the ``TreeConv`` class.
    For more details, refer to code examples.
    Tree-Based Convolution is a kind of convolution based on tree structure.
    Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
    which is used to classify tree structures, such as Abstract Syntax Tree.
    Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
    which regards multiway tree as binary tree.
    The paper of Tree-Based Convolution Operator is here: `tree-based convolution <https://arxiv.org/abs/1409.5718v1/>`_ .
    
    Parameters:
2978
        feature_size(int): last dimension of nodes_vector.
2979 2980 2981 2982 2983 2984 2985
        output_size(int): output feature width.
        num_filters(int, optional): number of filters, Default: 1.
        max_depth(int, optional): max depth of filters, Default: 2.
        act(str, optional): activation function, Default: tanh.
        param_attr(ParamAttr, optional): the parameter attribute for the filters, Default: None.
        bias_attr(ParamAttr, optional): the parameter attribute for the bias of this layer, Default: None.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` .
2986
        dtype (str, optional): Data type, it can be "float32" or "float64". Default: "float32".
2987

2988 2989
    Attribute:
        **weight** (Parameter): the learnable weights of filters of this layer.
2990

2991
        **bias** (Parameter or None): the learnable bias of this layer.
2992

2993 2994
    Returns:
        None
L
lujun 已提交
2995

2996
    Examples:
L
lujun 已提交
2997

2998
        .. code-block:: python
2999

3000 3001
          import paddle.fluid as fluid
          import numpy
3002

3003 3004 3005 3006
          with fluid.dygraph.guard():
              nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
              edge_set = numpy.random.random((1, 9, 2)).astype('int32')
              treeConv = fluid.dygraph.nn.TreeConv(
3007
                feature_size=5, output_size=6, num_filters=1, max_depth=2)
3008
              ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))
3009 3010
    """

L
lujun 已提交
3011
    def __init__(self,
3012
                 feature_size,
L
lujun 已提交
3013 3014 3015 3016 3017 3018
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
3019 3020 3021
                 name=None,
                 dtype='float32'):
        super(TreeConv, self).__init__()
L
lujun 已提交
3022
        self._name = name
3023
        self._feature_size = feature_size
L
lujun 已提交
3024 3025 3026 3027 3028 3029
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr
3030 3031
        self._dtype = dtype
        w_shape = [self._feature_size, 3, self._output_size, self._num_filters]
L
lujun 已提交
3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
        self.W = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
    @property
    def weight(self):
        return self.W

    @weight.setter
    def weight(self, value):
        self.W = value

    @property
    def bias(self):
        return self._bias_param

    @bias.setter
    def bias(self, value):
        self._bias_param = value

L
lujun 已提交
3060
    def forward(self, nodes_vector, edge_set):
3061

L
lujun 已提交
3062 3063 3064 3065
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
3066

L
lujun 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)

        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.W
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)