rowwise_add_op.cc 3.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include "paddle/operators/rowwise_add_op.h"
D
dongzhihong 已提交
16

17 18 19
namespace paddle {
namespace operators {

D
dongzhihong 已提交
20 21
using framework::Tensor;

22
class RowwiseAddOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
 protected:
D
dongzhihong 已提交
27
  void InferShape(const framework::InferShapeContext &ctx) const override {
Y
Yu Yang 已提交
28 29
    auto dim0 = ctx.Input<Tensor>("X")->dims();
    auto dim1 = ctx.Input<Tensor>("b")->dims();
30 31 32 33

    PADDLE_ENFORCE(dim0.size() == 2, "Input 0 must be matrix");
    PADDLE_ENFORCE(dim1.size() == 1, "The second input must be vector");
    PADDLE_ENFORCE(dim0[1] == dim1[0], "The width of two input must be same");
Y
Yu Yang 已提交
34 35
    PADDLE_ENFORCE(ctx.OutputSize("Out") == 1, "The output size must be 1");
    ctx.Output<Tensor>("Out")->Resize(ctx.Input<Tensor>("X")->dims());
36 37 38
  }
};

39
class RowwiseAddOpMaker : public framework::OpProtoAndCheckerMaker {
40
 public:
D
dongzhihong 已提交
41
  RowwiseAddOpMaker(framework::OpProto *proto,
D
dongzhihong 已提交
42
                    framework::OpAttrChecker *op_checker)
43
      : OpProtoAndCheckerMaker(proto, op_checker) {
44 45 46 47 48 49 50 51 52 53
    AddInput("X", "The left input of row-wise add op, must be matrix");
    AddInput("b", "The right input of row-wise add op, must be vector");
    AddOutput("Out", "The output of row-wise add op");
    AddComment(R"DOC(Row-wise Add operator

for i in xrange(X.shape[0]):
  Out = X[i] + b
)DOC");
  }
};
D
dongzhihong 已提交
54
class RowwiseAddGradOp : public framework::OperatorWithKernel {
D
dongzhihong 已提交
55 56 57
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

58
 protected:
D
dongzhihong 已提交
59
  void InferShape(const framework::InferShapeContext &ctx) const override {
D
dongzhihong 已提交
60 61 62 63 64 65 66 67 68 69 70 71
    // PADDLE_ENFORCE(ctx.InputSize() == 4UL,
    //                "RowwiseAddGrad inputs is I, O, OG, size must be 4");
    // PADDLE_ENFORCE(ctx.OutputSize() == 2,
    //                "RowwiseAddGrad output is IG, size must be 2");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "X should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("b"), "b should not be null");
    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                            "Input(Out@GRAD) should not be null");
    auto dims0 = ctx.Input<Tensor>("X")->dims();
    auto dims1 = ctx.Input<Tensor>("b")->dims();
    ctx.Output<Tensor>(framework::GradVarName("X"))->Resize(dims0);
    ctx.Output<Tensor>(framework::GradVarName("b"))->Resize(dims1);
D
dongzhihong 已提交
72 73
  }
};
74 75 76 77

}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
78
namespace ops = paddle::operators;
D
dongzhihong 已提交
79
REGISTER_OP(rowwise_add, ops::RowwiseAddOp, ops::RowwiseAddOpMaker);
80 81
REGISTER_OP_CPU_KERNEL(
    rowwise_add, ops::RowwiseAddKernel<paddle::platform::CPUPlace, float>);
D
dongzhihong 已提交
82

D
dongzhihong 已提交
83
REGISTER_GRADIENT_OP(rowwise_add, rowwise_add_grad, ops::RowwiseAddGradOp);
D
dongzhihong 已提交
84
REGISTER_OP_CPU_KERNEL(
85 86
    rowwise_add_grad,
    ops::RowwiseAddGradKernel<paddle::platform::CPUPlace, float>);