MKLDNNTester.cpp 13.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#include "MKLDNNTester.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
T
tensor-tang 已提交
18 19 20 21

namespace paddle {

// init data layer and test layer of both dnn and reference
22
void MKLDNNTester::reset(const TestConfig& dnn,
T
tensor-tang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
                         const TestConfig& ref,
                         size_t batchSize) {
  const bool trans = false;
  const bool useGpu = false;

  // clear
  configs_.clear();
  layerNames_.clear();
  dataLayers_.clear();
  datas_.clear();
  layerMaps_.clear();
  parameters_.clear();
  testLayers_.clear();

  // resize
  configs_.resize(NUM);
  layerNames_.resize(NUM);
  dataLayers_.resize(NUM);
  datas_.resize(NUM);
  layerMaps_.resize(NUM);
  parameters_.resize(NUM);
  testLayers_.resize(NUM);

  // reset configs and layer names
  configs_[DNN] = dnn;
  configs_[REF] = ref;
  layerNames_[DNN] = "mkldnn";     // the first is mkldnn layer
  layerNames_[REF] = "reference";  // second is reference layer

  // reset others
  for (size_t i = 0; i < NUM; ++i) {
    configs_[i].layerConfig.set_name(layerNames_[i]);
    initDataLayer(configs_[i],
                  &(dataLayers_[i]),
                  &(datas_[i]),
                  &(layerMaps_[i]),
                  layerNames_[i],
                  batchSize,
                  trans,
                  useGpu);
    initTestLayer(
        configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
  }
  refLayer_ = testLayers_[REF];
67
  dnnLayer_ = testLayers_[DNN];
T
tensor-tang 已提交
68 69 70
  EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
  setInputImgSize();
71 72 73 74 75 76 77

  // for comparison with Paddle reference results,
  // need manually add cpu device output for test
  MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
  if (dnnLayer) {
    dnnLayer->addOutputArgument(CPU_DEVICE);
  }
T
tensor-tang 已提交
78 79
}

80
void MKLDNNTester::setInputImgSize() {
T
tensor-tang 已提交
81 82 83 84 85 86 87 88 89 90
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
    for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
      // TODO(TJ): fix me when concat and elewise ready
      dataLayers_[n][i]->getOutput().setFrameHeight(ih_);
      dataLayers_[n][i]->getOutput().setFrameWidth(iw_);
    }
  }
}

// init randome parameters of ref, and copy to mkldnn
91
void MKLDNNTester::randomWgtDatas() {
T
tensor-tang 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
  for (size_t i = 0; i < parameters_[REF].size(); ++i) {
    const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
    parameters_[REF][i]->randomize();
    dnnValue->copyFrom(*refValue);

    VLOG(lvl_) << "Random weight data " << parameters_[DNN][i]->getName();
    printVector(dnnValue);
  }
}

// random botdata of ref layer and copy same to mkldnn
105
void MKLDNNTester::randomBotDatas() {
T
tensor-tang 已提交
106 107 108 109 110 111 112 113 114 115
  CHECK_EQ(dataLayers_.size(), NUM);
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    dataLayers_[REF][i]->getOutputValue()->randomizeUniform();
    dataLayers_[DNN][i]->getOutputValue()->copyFrom(
        *(dataLayers_[REF][i]->getOutputValue()));
    VLOG(lvl_) << "Input " << i << " data:";
    printMatrix(dataLayers_[REF][i]->getOutputValue());
  }
}

116
void MKLDNNTester::randomTopDiffs() {
T
tensor-tang 已提交
117
  refLayer_->getOutputGrad()->randomizeUniform();
118 119
  dnnLayer_->getOutput(CPU_DEVICE)
      .grad->copyFrom(*(refLayer_->getOutputGrad()));
120
  VLOG(lvl_) << "Random Backward Input, TopDiff: ";
T
tensor-tang 已提交
121 122 123
  printMatrix(refLayer_->getOutputGrad());
}

124
void MKLDNNTester::checkForward() {
T
tensor-tang 已提交
125
  VLOG(MKLDNN_ALL) << "Check Forward";
126
  printTopDatas();
127 128
  double delta =
      compareMatrix(dnnLayer_->getOutputValue(), refLayer_->getOutputValue());
T
tensor-tang 已提交
129 130 131
  EXPECT_LE(fabs(delta), eps_);
}

132
void MKLDNNTester::checkBackwardData() {
133
  VLOG(MKLDNN_ALL) << "Check Backward Data";
T
tensor-tang 已提交
134 135
  // TODO(TJ): uncomment me when batch norm ready
  // const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
T
tensor-tang 已提交
136 137 138 139 140 141 142 143 144 145
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad();
    const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad();
    VLOG(lvl_) << "Mkldnn Backward Output BotDiff " << i;
    printMatrix(dnnDiff);
    VLOG(lvl_) << "Reference Backward Output BotDiff " << i;
    printMatrix(refDiff);

    double delta = compareMatrix(dnnDiff, refDiff);
    EXPECT_LE(fabs(delta), eps_);
T
tensor-tang 已提交
146 147 148 149 150
    // TODO(TJ): uncomment me when batch norm ready
    // if (isBN) {
    //  // the other two inputs in batch norm are for moving mean and var
    //  break;
    // }
T
tensor-tang 已提交
151 152 153
  }
}

154
void MKLDNNTester::checkBackwardWgts() {
155
  VLOG(MKLDNN_ALL) << "Check Backward Weight";
T
tensor-tang 已提交
156 157 158 159
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  vector<VectorPtr> dnnWgts;  // used to temply save mkldnn weights
  saveWgt(parameters_[DNN], dnnWgts);

160 161 162 163
  MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
  if (dnnLayer) {
    dnnLayer->convertWeightsToPaddle();
  }
T
tensor-tang 已提交
164 165 166 167 168 169 170 171 172 173 174 175
  for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
    const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
    VLOG(lvl_) << "Mkldnn Output weight " << parameters_[DNN][i]->getName();
    printVector(dnn);
    VLOG(lvl_) << "Reference Output weight " << parameters_[REF][i]->getName();
    printVector(ref);

    double delta = compareVector(dnn, ref);
    EXPECT_LE(fabs(delta), eps_);
  }

T
tensor-tang 已提交
176
  VLOG(MKLDNN_ALL) << "Restore dnn weights before comapre";
T
tensor-tang 已提交
177 178 179
  restoreWgt(dnnWgts, parameters_[DNN]);
}

180
void MKLDNNTester::saveWgt(const vector<ParameterPtr>& from,
T
tensor-tang 已提交
181 182 183 184 185 186 187 188 189 190
                           vector<VectorPtr>& to) {
  const bool useGpu = false;
  to.resize(from.size());
  for (size_t i = 0; i < to.size(); ++i) {
    const VectorPtr& wgt = from[i]->getBuf(PARAMETER_VALUE);
    to[i] = Vector::create(wgt->getSize(), useGpu);
    to[i]->copyFrom(*wgt);
  }
}

191
void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
T
tensor-tang 已提交
192 193 194 195 196 197 198 199 200
                              vector<ParameterPtr>& to) {
  CHECK_EQ(from.size(), to.size());
  for (size_t i = 0; i < from.size(); ++i) {
    const VectorPtr& wgt = to[i]->getBuf(PARAMETER_VALUE);
    wgt->copyFrom(*from[i]);
  }
}

// clear parameters grad
201 202
void MKLDNNTester::clearWgtDiffs(size_t id) {
  CHECK_LE(id, parameters_.size());
T
tensor-tang 已提交
203
  for (size_t n = 0; n < parameters_.size(); ++n) {
204 205 206 207 208 209
    if (id == n || id == parameters_.size()) {
      for (size_t i = 0; i < parameters_[n].size(); ++i) {
        const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
        if (grad) {
          grad->zeroMem();
        }
T
tensor-tang 已提交
210 211 212 213 214
      }
    }
  }
}

215 216
void MKLDNNTester::clearBotDiffs(size_t id) {
  CHECK_LE(id, dataLayers_.size());
T
tensor-tang 已提交
217
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
218 219 220 221 222
    if (id == n || id == dataLayers_.size()) {
      // clear inputs layers of this specific layer
      for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
        dataLayers_[n][i]->getOutputGrad()->zeroMem();
      }
T
tensor-tang 已提交
223 224 225 226
    }
  }
}

227 228
void MKLDNNTester::clearTopDatas(size_t id) {
  CHECK_LE(id, testLayers_.size());
T
tensor-tang 已提交
229
  for (size_t i = 0; i < testLayers_.size(); ++i) {
230 231 232
    if (id == i || id == testLayers_.size()) {
      testLayers_[i]->getOutputValue()->zeroMem();
    }
T
tensor-tang 已提交
233 234 235
  }
}

236
void MKLDNNTester::printTopDatas() {
T
tensor-tang 已提交
237 238 239 240 241 242 243 244 245 246
  if (!log_) {
    return;
  }

  for (int n = 0; n < NUM; ++n) {
    VLOG(lvl_) << testLayers_[n]->getType() << " forward output TopData: ";
    printMatrix(testLayers_[n]->getOutputValue());
  }
}

247
void MKLDNNTester::printMatrix(const MatrixPtr& m) {
T
tensor-tang 已提交
248 249 250
  if (!log_) {
    return;
  }
T
tensor-tang 已提交
251 252 253 254

  std::ostringstream ostr;
  m->print(ostr);
  VLOG(lvl_) << std::endl << ostr.str();
T
tensor-tang 已提交
255 256
}

257
void MKLDNNTester::printVector(const VectorPtr& v) {
T
tensor-tang 已提交
258 259 260 261
  if (!log_) {
    return;
  }

T
tensor-tang 已提交
262 263 264
  std::ostringstream ostr;
  v->print(ostr, v->getSize());
  VLOG(lvl_) << std::endl << ostr.str();
T
tensor-tang 已提交
265 266
}

267
double MKLDNNTester::getDelta(const real* d1,
T
tensor-tang 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
                              const real* d2,
                              size_t len,
                              const float failRate,
                              const float thres) {
  double delta = 0, sum = 0;
  int failCnt = 0;
  const double eps = 1e-5;
  double maxOut = 0;
  for (size_t i = 0; i < len; ++i) {
    double ref = fabs(d2[i]);
    double diff = fabs(d1[i] - d2[i]);
    delta += diff;
    sum += ref;
    if (ref > eps && fabs(d1[i]) > eps && diff / ref > thres) {
      maxOut = std::max(maxOut, diff / ref);
      failCnt++;
    }
  }
  EXPECT_TRUE(std::isnormal(sum));
  EXPECT_FALSE(std::isinf(sum));
  EXPECT_FALSE(std::isnan(delta));
T
tensor-tang 已提交
289 290
  VLOG(MKLDNN_ALL) << "reference avg data: " << sum / len
                   << ", delta: " << delta / sum << ", failCnt:" << failCnt;
T
tensor-tang 已提交
291 292 293
  return (failCnt / (float)len) > failRate ? maxOut : delta / sum;
}

294
double MKLDNNTester::compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2) {
T
tensor-tang 已提交
295 296 297 298
  CHECK_EQ(m1->getElementCnt(), m2->getElementCnt());
  return getDelta(m1->getData(), m2->getData(), m1->getElementCnt());
}

299
double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) {
T
tensor-tang 已提交
300 301 302 303
  CHECK_EQ(v1->getSize(), v2->getSize());
  return getDelta(v1->getData(), v2->getData(), v1->getSize());
}

304
void MKLDNNTester::runOnce() {
T
tensor-tang 已提交
305 306 307 308 309 310 311
  // test forward
  randomBotDatas();
  dnnLayer_->forward(PASS_TRAIN);
  refLayer_->forward(PASS_TRAIN);
  checkForward();

  // test backward
312 313 314 315 316 317 318
  // simple updater
  UpdateCallback updateCallback = [](Parameter* para) {
    auto& grad = para->getBuf(PARAMETER_GRADIENT);
    auto& value = para->getBuf(PARAMETER_VALUE);
    real lr = 1e-3;
    value->add(*grad, lr);
  };
T
tensor-tang 已提交
319
  randomTopDiffs();
320 321
  dnnLayer_->backward(updateCallback);
  refLayer_->backward(updateCallback);
T
tensor-tang 已提交
322 323 324 325 326
  checkBackwardData();
  checkBackwardWgts();

  // clear buffers
  // ref code will addto the diff, dnn code will writeto it
327
  // and clearTopDatas(REF) should be coverd by ref layers
T
tensor-tang 已提交
328
  clearBotDiffs(REF);
329
  clearWgtDiffs(REF);
330 331 332 333
  // it is necessary to clear bottom diffs when only activation is dnn type
  if (configs_[DNN].layerConfig.active_type().compare(0, 7, "mkldnn_") == 0) {
    clearBotDiffs(DNN);
  }
T
tensor-tang 已提交
334 335
}

336
void MKLDNNTester::run(const TestConfig& dnn,
T
tensor-tang 已提交
337 338 339 340 341 342 343 344
                       const TestConfig& ref,
                       size_t batchSize,
                       size_t inputImgH,
                       size_t inputImgW,
                       size_t iter,
                       float epsilon,
                       bool log,
                       int level) {
345 346 347 348 349 350 351 352 353 354 355 356 357
  CHECK(dnn.layerConfig.type().compare(0, 7, "mkldnn_") == 0 ||
        dnn.layerConfig.active_type().compare(0, 7, "mkldnn_") == 0)
      << "should be MKLDNN layer or MKLDNN activation";
  if (dnn.layerConfig.type() == ref.layerConfig.type()) {
    VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: "
                       << dnn.layerConfig.active_type() << " vs "
                       << ref.layerConfig.active_type();
  } else {
    VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: "
                       << dnn.layerConfig.type() << " vs "
                       << ref.layerConfig.type();
  }

T
tensor-tang 已提交
358 359 360 361 362 363 364
  ih_ = inputImgH;
  iw_ = inputImgW;
  iter_ = iter;
  eps_ = epsilon;
  log_ = log;
  lvl_ = level;

T
tensor-tang 已提交
365
  // Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight
T
tensor-tang 已提交
366
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
367 368 369
  randomWgtDatas();
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
370
  for (size_t i = 0; i < iter_; ++i) {
T
tensor-tang 已提交
371
    VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
T
tensor-tang 已提交
372 373
    runOnce();
  }
T
tensor-tang 已提交
374

T
tensor-tang 已提交
375 376 377 378 379
  if (parameters_[DNN].empty()) {
    // has no paramters
    return;
  }

T
tensor-tang 已提交
380 381 382 383
  // After run some iterations, the mkldnn weight has been stored in dnnLayer
  // and we can also get the mkldnn weight parameter header format.
  // Weight parameter should always be index 0 (and bias index 1).
  // TODO(TJ): should also consider mean and var format when batchnorm ready
T
tensor-tang 已提交
384 385 386 387 388 389 390
  int dnnWgtFmt = parameters_[DNN][0]->getHeaderFormat();
  int refWgtFmt = parameters_[REF][0]->getHeaderFormat();
  if (dnnWgtFmt == refWgtFmt) {
    // weight format are equal, so no need check more
    return;
  }

T
tensor-tang 已提交
391
  // then save the weights and restart again
T
tensor-tang 已提交
392 393 394 395
  vector<VectorPtr> dnnWgts, refWgts;
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  saveWgt(parameters_[DNN], dnnWgts);
  saveWgt(parameters_[REF], refWgts);
T
tensor-tang 已提交
396

T
tensor-tang 已提交
397
  // restart again with dnn weight format
T
tensor-tang 已提交
398
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
399 400
  // TODO(TJ): should also considerate mean and var format when batchnorm ready
  parameters_[DNN][0]->setHeaderFormat(dnnWgtFmt);
T
tensor-tang 已提交
401

T
tensor-tang 已提交
402 403 404 405 406
  // restore wgt
  restoreWgt(dnnWgts, parameters_[DNN]);
  restoreWgt(refWgts, parameters_[REF]);
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
407

T
tensor-tang 已提交
408
  for (size_t i = 0; i < iter_; ++i) {
T
tensor-tang 已提交
409
    VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
T
tensor-tang 已提交
410 411 412 413 414
    runOnce();
  }
}

}  //  namespace paddle