MKLDNNTester.cpp 11.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17
#include "MKLDNNTester.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
T
tensor-tang 已提交
18 19 20 21

namespace paddle {

// init data layer and test layer of both dnn and reference
22
void MKLDNNTester::reset(const TestConfig& dnn,
T
tensor-tang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
                         const TestConfig& ref,
                         size_t batchSize) {
  const bool trans = false;
  const bool useGpu = false;

  // clear
  configs_.clear();
  layerNames_.clear();
  dataLayers_.clear();
  datas_.clear();
  layerMaps_.clear();
  parameters_.clear();
  testLayers_.clear();

  // resize
  configs_.resize(NUM);
  layerNames_.resize(NUM);
  dataLayers_.resize(NUM);
  datas_.resize(NUM);
  layerMaps_.resize(NUM);
  parameters_.resize(NUM);
  testLayers_.resize(NUM);

  // reset configs and layer names
  configs_[DNN] = dnn;
  configs_[REF] = ref;
  layerNames_[DNN] = "mkldnn";     // the first is mkldnn layer
  layerNames_[REF] = "reference";  // second is reference layer

  // reset others
  for (size_t i = 0; i < NUM; ++i) {
    configs_[i].layerConfig.set_name(layerNames_[i]);
    initDataLayer(configs_[i],
                  &(dataLayers_[i]),
                  &(datas_[i]),
                  &(layerMaps_[i]),
                  layerNames_[i],
                  batchSize,
                  trans,
                  useGpu);
    initTestLayer(
        configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
  }
  dnnLayer_ = testLayers_[DNN];
  refLayer_ = testLayers_[REF];
  EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());

  setInputImgSize();
}

74
void MKLDNNTester::setInputImgSize() {
T
tensor-tang 已提交
75 76 77 78 79 80 81 82 83 84
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
    for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
      // TODO(TJ): fix me when concat and elewise ready
      dataLayers_[n][i]->getOutput().setFrameHeight(ih_);
      dataLayers_[n][i]->getOutput().setFrameWidth(iw_);
    }
  }
}

// init randome parameters of ref, and copy to mkldnn
85
void MKLDNNTester::randomWgtDatas() {
T
tensor-tang 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98
  EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
  for (size_t i = 0; i < parameters_[REF].size(); ++i) {
    const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
    parameters_[REF][i]->randomize();
    dnnValue->copyFrom(*refValue);

    VLOG(lvl_) << "Random weight data " << parameters_[DNN][i]->getName();
    printVector(dnnValue);
  }
}

// random botdata of ref layer and copy same to mkldnn
99
void MKLDNNTester::randomBotDatas() {
T
tensor-tang 已提交
100 101 102 103 104 105 106 107 108 109
  CHECK_EQ(dataLayers_.size(), NUM);
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    dataLayers_[REF][i]->getOutputValue()->randomizeUniform();
    dataLayers_[DNN][i]->getOutputValue()->copyFrom(
        *(dataLayers_[REF][i]->getOutputValue()));
    VLOG(lvl_) << "Input " << i << " data:";
    printMatrix(dataLayers_[REF][i]->getOutputValue());
  }
}

110
void MKLDNNTester::randomTopDiffs() {
T
tensor-tang 已提交
111 112 113 114 115 116
  refLayer_->getOutputGrad()->randomizeUniform();
  dnnLayer_->getOutputGrad()->copyFrom(*(refLayer_->getOutputGrad()));
  VLOG(lvl_) << "Random dom Backward Input, TopDiff: ";
  printMatrix(refLayer_->getOutputGrad());
}

117
void MKLDNNTester::checkForward() {
T
tensor-tang 已提交
118 119 120
  printTopDatas();
  double delta = compareMatrix(testLayers_[DNN]->getOutputValue(),
                               testLayers_[REF]->getOutputValue());
T
tensor-tang 已提交
121
  VLOG(MKLDNN_ALL) << "Check Forward";
T
tensor-tang 已提交
122 123 124
  EXPECT_LE(fabs(delta), eps_);
}

125
void MKLDNNTester::checkBackwardData() {
T
tensor-tang 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
  for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
    const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad();
    const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad();
    VLOG(lvl_) << "Mkldnn Backward Output BotDiff " << i;
    printMatrix(dnnDiff);
    VLOG(lvl_) << "Reference Backward Output BotDiff " << i;
    printMatrix(refDiff);

    double delta = compareMatrix(dnnDiff, refDiff);
    EXPECT_LE(fabs(delta), eps_);
    if (isBN) {
      // the other two inputs in batch norm are for moving mean and var
      break;
    }
  }
}

144
void MKLDNNTester::checkBackwardWgts() {
T
tensor-tang 已提交
145 146 147 148
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  vector<VectorPtr> dnnWgts;  // used to temply save mkldnn weights
  saveWgt(parameters_[DNN], dnnWgts);

149 150
  const MKLDNNLayerPtr dnnlayer =
      std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
T
tensor-tang 已提交
151
  CHECK(dnnlayer);
152
  dnnlayer->convertWeightsToPaddle();
T
tensor-tang 已提交
153 154 155 156 157 158 159 160 161 162 163 164
  for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
    const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
    const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
    VLOG(lvl_) << "Mkldnn Output weight " << parameters_[DNN][i]->getName();
    printVector(dnn);
    VLOG(lvl_) << "Reference Output weight " << parameters_[REF][i]->getName();
    printVector(ref);

    double delta = compareVector(dnn, ref);
    EXPECT_LE(fabs(delta), eps_);
  }

T
tensor-tang 已提交
165
  VLOG(MKLDNN_ALL) << "Restore dnn weights before comapre";
T
tensor-tang 已提交
166 167 168
  restoreWgt(dnnWgts, parameters_[DNN]);
}

169
void MKLDNNTester::saveWgt(const vector<ParameterPtr>& from,
T
tensor-tang 已提交
170 171 172 173 174 175 176 177 178 179
                           vector<VectorPtr>& to) {
  const bool useGpu = false;
  to.resize(from.size());
  for (size_t i = 0; i < to.size(); ++i) {
    const VectorPtr& wgt = from[i]->getBuf(PARAMETER_VALUE);
    to[i] = Vector::create(wgt->getSize(), useGpu);
    to[i]->copyFrom(*wgt);
  }
}

180
void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
T
tensor-tang 已提交
181 182 183 184 185 186 187 188 189
                              vector<ParameterPtr>& to) {
  CHECK_EQ(from.size(), to.size());
  for (size_t i = 0; i < from.size(); ++i) {
    const VectorPtr& wgt = to[i]->getBuf(PARAMETER_VALUE);
    wgt->copyFrom(*from[i]);
  }
}

// clear parameters grad
190
void MKLDNNTester::clearWgtDiffs() {
T
tensor-tang 已提交
191 192 193 194 195 196 197 198 199 200
  for (size_t n = 0; n < parameters_.size(); ++n) {
    for (size_t i = 0; i < parameters_[n].size(); ++i) {
      const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
      if (grad) {
        grad->zeroMem();
      }
    }
  }
}

201
void MKLDNNTester::clearBotDiffs() {
T
tensor-tang 已提交
202 203 204 205 206 207 208 209 210
  // dnn and ref
  for (size_t n = 0; n < dataLayers_.size(); ++n) {
    // all inputs layers
    for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
      dataLayers_[n][i]->getOutputGrad()->zeroMem();
    }
  }
}

211
void MKLDNNTester::clearBotDiffs(int n) {
T
tensor-tang 已提交
212 213 214 215 216 217 218
  CHECK_LT(n, NUM);
  // all inputs layers
  for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
    dataLayers_[n][i]->getOutputGrad()->zeroMem();
  }
}

219
void MKLDNNTester::clearTopDatas() {
T
tensor-tang 已提交
220 221 222 223 224
  for (size_t i = 0; i < testLayers_.size(); ++i) {
    testLayers_[i]->getOutputValue()->zeroMem();
  }
}

225
void MKLDNNTester::printTopDatas() {
T
tensor-tang 已提交
226 227 228 229 230 231 232 233 234 235
  if (!log_) {
    return;
  }

  for (int n = 0; n < NUM; ++n) {
    VLOG(lvl_) << testLayers_[n]->getType() << " forward output TopData: ";
    printMatrix(testLayers_[n]->getOutputValue());
  }
}

236
void MKLDNNTester::printMatrix(const MatrixPtr& m) {
T
tensor-tang 已提交
237 238 239
  if (!log_) {
    return;
  }
T
tensor-tang 已提交
240 241 242 243

  std::ostringstream ostr;
  m->print(ostr);
  VLOG(lvl_) << std::endl << ostr.str();
T
tensor-tang 已提交
244 245
}

246
void MKLDNNTester::printVector(const VectorPtr& v) {
T
tensor-tang 已提交
247 248 249 250
  if (!log_) {
    return;
  }

T
tensor-tang 已提交
251 252 253
  std::ostringstream ostr;
  v->print(ostr, v->getSize());
  VLOG(lvl_) << std::endl << ostr.str();
T
tensor-tang 已提交
254 255
}

256
double MKLDNNTester::getDelta(const real* d1,
T
tensor-tang 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
                              const real* d2,
                              size_t len,
                              const float failRate,
                              const float thres) {
  double delta = 0, sum = 0;
  int failCnt = 0;
  const double eps = 1e-5;
  double maxOut = 0;
  for (size_t i = 0; i < len; ++i) {
    double ref = fabs(d2[i]);
    double diff = fabs(d1[i] - d2[i]);
    delta += diff;
    sum += ref;
    if (ref > eps && fabs(d1[i]) > eps && diff / ref > thres) {
      maxOut = std::max(maxOut, diff / ref);
      failCnt++;
    }
  }
  EXPECT_TRUE(std::isnormal(sum));
  EXPECT_FALSE(std::isinf(sum));
  EXPECT_FALSE(std::isnan(delta));
T
tensor-tang 已提交
278 279
  VLOG(MKLDNN_ALL) << "reference avg data: " << sum / len
                   << ", delta: " << delta / sum << ", failCnt:" << failCnt;
T
tensor-tang 已提交
280 281 282
  return (failCnt / (float)len) > failRate ? maxOut : delta / sum;
}

283
double MKLDNNTester::compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2) {
T
tensor-tang 已提交
284 285 286 287
  CHECK_EQ(m1->getElementCnt(), m2->getElementCnt());
  return getDelta(m1->getData(), m2->getData(), m1->getElementCnt());
}

288
double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) {
T
tensor-tang 已提交
289 290 291 292
  CHECK_EQ(v1->getSize(), v2->getSize());
  return getDelta(v1->getData(), v2->getData(), v1->getSize());
}

293
void MKLDNNTester::runOnce() {
T
tensor-tang 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
  // test forward
  randomBotDatas();
  dnnLayer_->forward(PASS_TRAIN);
  refLayer_->forward(PASS_TRAIN);
  checkForward();

  // test backward
  randomTopDiffs();
  dnnLayer_->backward(nullptr);
  refLayer_->backward(nullptr);
  checkBackwardData();
  checkBackwardWgts();

  // clear buffers
  // ref code will addto the diff, dnn code will writeto it
T
tensor-tang 已提交
309
  // and clearTopDatas() and clearWgtDiffs() should be coverd by test layers
T
tensor-tang 已提交
310 311 312
  clearBotDiffs(REF);
}

313
void MKLDNNTester::run(const TestConfig& dnn,
T
tensor-tang 已提交
314 315 316 317 318 319 320 321
                       const TestConfig& ref,
                       size_t batchSize,
                       size_t inputImgH,
                       size_t inputImgW,
                       size_t iter,
                       float epsilon,
                       bool log,
                       int level) {
T
tensor-tang 已提交
322 323
  VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " << dnn.layerConfig.type()
                     << " vs " << ref.layerConfig.type();
T
tensor-tang 已提交
324 325 326 327 328 329 330
  ih_ = inputImgH;
  iw_ = inputImgW;
  iter_ = iter;
  eps_ = epsilon;
  log_ = log;
  lvl_ = level;

T
tensor-tang 已提交
331 332
  // Firstly test FLAGS_use_mkldnn_wgt = false
  FLAGS_use_mkldnn_wgt = false;
T
tensor-tang 已提交
333
  // reset and run once
T
tensor-tang 已提交
334
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
335 336 337
  randomWgtDatas();
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
338
  for (size_t i = 0; i < iter_; ++i) {
T
tensor-tang 已提交
339
    VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
T
tensor-tang 已提交
340 341
    runOnce();
  }
T
tensor-tang 已提交
342

T
tensor-tang 已提交
343 344 345
  // Then test FLAGS_use_mkldnn_wgt = true
  FLAGS_use_mkldnn_wgt = true;
  // after run once the mkldnn weight has been stored in dnnlayer
T
tensor-tang 已提交
346
  // then save the weights and restart again
T
tensor-tang 已提交
347 348 349 350
  vector<VectorPtr> dnnWgts, refWgts;
  CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
  saveWgt(parameters_[DNN], dnnWgts);
  saveWgt(parameters_[REF], refWgts);
T
tensor-tang 已提交
351

T
tensor-tang 已提交
352 353
  // restart again with flag true
  reset(dnn, ref, batchSize);
T
tensor-tang 已提交
354

T
tensor-tang 已提交
355 356 357 358 359
  // restore wgt
  restoreWgt(dnnWgts, parameters_[DNN]);
  restoreWgt(refWgts, parameters_[REF]);
  clearWgtDiffs();
  clearBotDiffs();
T
tensor-tang 已提交
360

T
tensor-tang 已提交
361
  for (size_t i = 0; i < iter_; ++i) {
T
tensor-tang 已提交
362
    VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
T
tensor-tang 已提交
363 364 365 366 367
    runOnce();
  }
}

}  //  namespace paddle