conv_cudnn_helper.h 26.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <algorithm>
18
#include <array>
19
#include <memory>
20
#include <string>
Q
qingqing01 已提交
21
#include <vector>
22

23
#include "paddle/fluid/framework/conv_search_cache.h"
Q
qingqing01 已提交
24 25
#include "paddle/fluid/framework/operator_kernel_configs.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
26
#include "paddle/fluid/operators/eigen/eigen_function.h"
Q
qingqing01 已提交
27 28 29 30
#include "paddle/fluid/platform/cudnn_desc.h"
namespace paddle {
namespace operators {

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
using Tensor = framework::Tensor;
using DataLayout = platform::DataLayout;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
using framework::AlgorithmsCache;
static inline void GetNCDHW(const framework::DDim& dims,
                            const DataLayout& layout, int* N, int* C, int* D,
                            int* H, int* W) {
  *N = dims[0];
  *C = layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1];
  int i = layout == DataLayout::kNCHW ? 0 : 1;
  if (dims.size() == 5) {
    *D = dims[2 - i];
    *H = dims[3 - i];
    *W = dims[4 - i];
  } else {
    *D = 1;
    *H = dims[2 - i];
    *W = dims[3 - i];
  }
}

template <typename DeviceContext, typename T, size_t D>
static void RemovePaddingSlice(const framework::ExecutionContext& context,
                               const Tensor* input, Tensor* out,
                               const std::vector<int>& starts,
                               const std::vector<int>& axes) {
  auto& place =
      *context.template device_context<DeviceContext>().eigen_device();
  auto in_dims = input->dims();
  auto new_out_dims = out->dims();
62 63
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = new_out_dims[i];
  }

  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *input);

  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out, new_out_dims);
85 86
  EigenSlice<std::decay_t<decltype(place)>, T, D>::Eval(place, out_t, in_t,
                                                        offsets, extents);
87 88
}

89 90 91 92 93 94 95 96
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::vector<T>& v) {
  out << "[";
  for (auto const& tmp : v) out << tmp << ",";
  out << "]";
  return out;
}

97 98 99 100 101 102 103 104 105 106
inline int MaxBwdFilterAlgos(cudnnHandle_t cudnn_handle) {
  int max_algos = 0;
#if CUDNN_VERSION_MIN(7, 0, 1)
  PADDLE_ENFORCE_CUDA_SUCCESS(
      platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(
          cudnn_handle, &max_algos));
#endif
  return max_algos;
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
template <typename PerfType, typename AlgoType>
void ChooseAlgoByWorkspace(PerfType* perf_results, size_t perf_num,
                           size_t workspace_byte, AlgoType* algo) {
  for (size_t i = 0; i < perf_num; ++i) {
    auto result = perf_results[i];
    if (result.status == CUDNN_STATUS_SUCCESS &&
        result.memory < workspace_byte) {
      *algo = result.algo;
      VLOG(3) << "    algo: " << result.algo << ", time: " << result.time
              << " ms, wksp = " << result.memory
              << ", status = " << result.status;
      return;
    }
  }
  VLOG(3) << "Can not find alog that requires memory < "
          << static_cast<double>(workspace_byte) / (1 << 20) << " MB";
}

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
template <typename PerfType, typename AlgoType>
void ChooseAlgo(const std::vector<PerfType>& perf_results,
                size_t workspace_byte, AlgoType* algo) {
  VLOG(3) << "=========BwdFilterAlgo Perf result=========";
  for (const auto& result : perf_results) {
    auto math_type_str = "False";
    if (result.mathType == CUDNN_TENSOR_OP_MATH) {
      math_type_str = "True";
    }
    VLOG(3) << "    algo: " << result.algo << ", TensorCore: " << math_type_str
            << ", time: " << result.time << " ms"
            << ", wksp = " << result.memory << ", status = " << result.status;
  }

  for (size_t i = 0; i != perf_results.size(); ++i) {
    const auto& result = perf_results[i];
    if (result.status == CUDNN_STATUS_SUCCESS &&
        (result.memory <= workspace_byte)) {
      if ((result.mathType == CUDNN_TENSOR_OP_MATH) &&
          (i != perf_results.size() - 1)) {
        const auto& next_result = perf_results[i + 1];
        if (next_result.status == CUDNN_STATUS_SUCCESS &&
            next_result.algo == result.algo &&
            next_result.memory == result.memory &&
            next_result.mathType != CUDNN_TENSOR_OP_MATH &&
            next_result.time < 1.01 * result.time) {
          // Skip over this result- it's not really a Tensor Core algo.
          // Because it is only 1% performance difference.
          // Prefer to choose the next equivalent non-Tensor Core algo.
          continue;
        }
      }
      *algo = result.algo;
      auto math_type_str = "0";
      if (result.mathType == CUDNN_TENSOR_OP_MATH) {
        math_type_str = "1";
      }
      VLOG(3) << "    choose algo: " << result.algo << ", TC: " << math_type_str
              << ", time: " << result.time << " ms"
              << ", wksp = " << result.memory << ", status = " << result.status;
      return;
    }
  }
}

170
using framework::ConvSearchCache;
Q
qingqing01 已提交
171 172 173 174 175 176 177

struct ConvArgs {
  cudnnHandle_t handle;
  platform::TensorDescriptor idesc, odesc;
  platform::FilterDescriptor wdesc;
  platform::ConvolutionDescriptor cdesc;
  const framework::Tensor *x, *w, *o;
178
  cudnnDataType_t cudnn_dtype;
Q
qingqing01 已提交
179 180 181 182 183 184 185 186 187 188

  // strides
  std::vector<int> s;
  // paddings
  std::vector<int> p;
  // dilations
  std::vector<int> d;

  ConvArgs(const framework::Tensor* x, const framework::Tensor* w,
           const framework::Tensor* o, const std::vector<int> s,
189 190 191
           const std::vector<int> p, const std::vector<int> d,
           cudnnDataType_t dtype)
      : x(x), w(w), o(o), s(s), p(p), d(d), cudnn_dtype(dtype) {}
Q
qingqing01 已提交
192 193 194 195 196 197 198 199 200 201 202 203
};

template <typename perf_t>
struct SearchAlgorithm {};

template <>
struct SearchAlgorithm<cudnnConvolutionFwdAlgoPerf_t> {
  using perf_t = cudnnConvolutionFwdAlgoPerf_t;
  using algo_t = cudnnConvolutionFwdAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
204
                     bool deterministic,
Q
qingqing01 已提交
205 206
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
207
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
208
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
209
    size_t workspace_size = 0;
Q
qingqing01 已提交
210
    algo_t algo;
211 212 213

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
A
AshburnLee 已提交
214 215 216
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
        args.cdesc.desc(), CUDNN_DEFAULT_MATH));
    VLOG(5) << "NOT use cudnn_tensor_op_math";
217
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
218 219 220
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_TENSOR_OP_MATH));
221
      VLOG(5) << "use cudnn_tensor_op_math";
A
AshburnLee 已提交
222 223
    } else if (dtype == CUDNN_DATA_FLOAT && !args.cdesc.allow_tf32_) {
#if CUDA_VERSION >= 11000
224 225
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
A
AshburnLee 已提交
226 227
                                                         CUDNN_FMA_MATH));
#endif  // CUDA_VERSION >= 11000
228 229 230
    }
#endif

231
    if (!exhaustive_search && !deterministic) {
232 233 234 235
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(new perf_t[kNUM_CUDNN_FWD_ALGS]);
236 237 238 239 240
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(), kNUM_CUDNN_FWD_ALGS,
              &perf_count, perf_results.get()));
241 242 243 244
      algo = (perf_results.get())[best_algo_idx].algo;
      workspace_size = GetWorkspaceSize(args, algo);

      if (workspace_size > workspace_size_limit) {
245
#if CUDNN_VERSION >= 8000
246 247 248 249
        // cudnnGetConvolutionForwardAlgorithm is removed in CUDNN-8
        ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
                                              kNUM_CUDNN_FWD_ALGS,
                                              workspace_size_limit, &algo);
250 251 252 253 254 255 256 257 258 259 260 261
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnGetConvolutionForwardAlgorithm(
                args.handle, args.idesc.desc(), args.wdesc.desc(),
                args.cdesc.desc(), args.odesc.desc(),
                CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
262 263
      }
#else
264 265 266 267 268 269
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardAlgorithm(
              args.handle, args.idesc.desc(), args.wdesc.desc(),
              args.cdesc.desc(), args.odesc.desc(),
              CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
270
#endif
Q
qingqing01 已提交
271
      VLOG(3) << "choose algo " << algo;
272 273
    } else if (deterministic) {
      algo = static_cast<cudnnConvolutionFwdAlgo_t>(1);
Q
qingqing01 已提交
274 275 276 277 278
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

279 280
      auto& temp = ctx.cuda_device_context();
      AlgorithmsCache<algo_t>& algo_cache =
281
          *(framework::ConvSearchCache::Instance().GetForward());
282

Q
qingqing01 已提交
283 284 285
      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

286 287 288
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
289

Q
qingqing01 已提交
290
      algo = algo_cache.GetAlgorithm(
291 292
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
Q
qingqing01 已提交
293 294 295 296
            int returned_algo_count;
            std::array<perf_t, kNUM_CUDNN_FWD_ALGS> perf_stat;

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
297
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
                  platform::dynload::cudnnFindConvolutionForwardAlgorithmEx(
                      args.handle, args.idesc.desc(), args.x->data<T>(),
                      args.wdesc.desc(), args.w->data<T>(), args.cdesc.desc(),
                      args.odesc.desc(), const_cast<T*>(args.o->data<T>()),
                      kNUM_CUDNN_FWD_ALGS, &returned_algo_count,
                      perf_stat.data(), cudnn_workspace_ptr,
                      workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "FwdAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }
            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
323 324 325 326
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
            args.handle, args.idesc.desc(), args.wdesc.desc(),
            args.cdesc.desc(), args.odesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
327 328 329 330 331 332 333 334 335 336 337
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdDataAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdDataAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
338
                     bool deterministic,
Q
qingqing01 已提交
339 340 341
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
342 343
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;
Q
qingqing01 已提交
344
    algo_t algo;
345 346
#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
A
AshburnLee 已提交
347 348 349
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
        args.cdesc.desc(), CUDNN_DEFAULT_MATH));
    VLOG(5) << "NOT use cudnn_tensor_op_math";
350
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
351 352 353
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_TENSOR_OP_MATH));
354
      VLOG(5) << "use cudnn_tensor_op_math";
A
AshburnLee 已提交
355 356
    } else if (dtype == CUDNN_DATA_FLOAT && !args.cdesc.allow_tf32_) {
#if CUDA_VERSION >= 11000
357 358
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
A
AshburnLee 已提交
359 360
                                                         CUDNN_FMA_MATH));
#endif  // CUDA_VERSION >= 11000
361 362 363
    }
#endif

364
    if (!exhaustive_search && !deterministic) {
365 366 367 368 369
#if CUDNN_VERSION >= 7001
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_DATA_ALGS]);
370
      PADDLE_ENFORCE_CUDA_SUCCESS(
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm_v7(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(), kNUM_CUDNN_BWD_DATA_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;

#if CUDNN_VERSION < 7500
      int stride_dim = args.x->dims().size() - 2;
      bool blacklist = std::any_of(args.s.begin(), args.s.begin() + stride_dim,
                                   [=](int n) { return n != 1; });
      if (blacklist && (static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
                        static_cast<cudnnConvolutionBwdDataAlgo_t>(
                            perf_results[best_algo_idx].algo) ==
                            CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT)) {
        algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      }
#endif
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
        has_got_workspace_size = false;
393
#if CUDNN_VERSION >= 8000
394 395 396 397
        // cudnnGetConvolutionBackwardDataAlgorithm is removed in CUDNN-8
        ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
                                              kNUM_CUDNN_BWD_DATA_ALGS,
                                              workspace_size_limit, &algo);
398 399 400 401 402 403 404 405 406 407 408 409
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                args.handle, args.wdesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.idesc.desc(),
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
410 411
      }
#else
412 413 414 415 416 417
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
              args.handle, args.wdesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.idesc.desc(),
              CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
418
#endif
Q
qingqing01 已提交
419 420 421 422 423 424 425
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();

426
      AlgorithmsCache<algo_t>& algo_cache =
427
          *(framework::ConvSearchCache::Instance().GetBackwardData());
428

Q
qingqing01 已提交
429 430 431
      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

432 433 434
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
435

Q
qingqing01 已提交
436
      algo = algo_cache.GetAlgorithm(
437 438
          x_dims, w_dims, args.s, args.p, args.d, 0,
          static_cast<int64_t>(args.cudnn_dtype), [&]() {
Q
qingqing01 已提交
439
            int returned_algo_count;
440
            std::array<perf_t, kNUM_CUDNN_BWD_DATA_ALGS> perf_stat;
Q
qingqing01 已提交
441 442

            auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
443
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
                  platform::dynload::
                      cudnnFindConvolutionBackwardDataAlgorithmEx(
                          args.handle, args.wdesc.desc(), args.w->data<T>(),
                          args.odesc.desc(), args.o->data<T>(),
                          args.cdesc.desc(), args.idesc.desc(),
                          const_cast<T*>(args.x->data<T>()),
                          kNUM_CUDNN_BWD_DATA_ALGS, &returned_algo_count,
                          perf_stat.data(), cudnn_workspace_ptr,
                          workspace_size_limit));
            };
            workspace_handle.RunFuncSync(cudnn_find_func, workspace_size_limit);

            VLOG(3) << "BwdDataAlgo Perf result: (algo: stat, time, memory)";
            for (int i = 0; i < returned_algo_count; ++i) {
              const auto& stat = perf_stat[i];
              VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                      << " " << stat.memory;
            }

            return perf_stat[0].algo;
          });
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
472
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
473
        platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
474 475
            args.handle, args.wdesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.idesc.desc(), algo, &workspace_size));
Q
qingqing01 已提交
476 477 478 479 480 481 482 483 484 485 486
    return workspace_size;
  }
};

template <>
struct SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t> {
  using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
  using algo_t = cudnnConvolutionBwdFilterAlgo_t;

  template <typename T>
  static algo_t Find(const ConvArgs& args, bool exhaustive_search,
487
                     bool deterministic,
Q
qingqing01 已提交
488 489 490
                     const framework::ExecutionContext& ctx) {
    auto dtype = platform::CudnnDataType<T>::type;
    size_t workspace_size_limit = FLAGS_conv_workspace_size_limit * 1024 * 1024;
491 492 493 494 495
    size_t workspace_size = 0;
    bool has_got_workspace_size = true;

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
A
AshburnLee 已提交
496 497 498
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetConvolutionMathType(
        args.cdesc.desc(), CUDNN_DEFAULT_MATH));
    VLOG(5) << "NOT use cudnn_tensor_op_math";
499
    if (dev_ctx.GetComputeCapability() >= 70 && dtype == CUDNN_DATA_HALF) {
500 501 502
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
                                                         CUDNN_TENSOR_OP_MATH));
503
      VLOG(5) << "use cudnn_tensor_op_math";
A
AshburnLee 已提交
504 505
    } else if (dtype == CUDNN_DATA_FLOAT && !args.cdesc.allow_tf32_) {
#if CUDA_VERSION >= 11000
506 507
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(args.cdesc.desc(),
A
AshburnLee 已提交
508 509
                                                         CUDNN_FMA_MATH));
#endif  // CUDA_VERSION >= 11000
510 511
    }
#endif
Q
qingqing01 已提交
512 513

    algo_t algo;
514
    if (!exhaustive_search && !deterministic) {
515 516 517 518 519 520
#if CUDNN_VERSION >= 7001
      using perf_t = cudnnConvolutionBwdFilterAlgoPerf_t;
      int perf_count;
      int best_algo_idx = 0;
      std::unique_ptr<perf_t[]> perf_results(
          new perf_t[kNUM_CUDNN_BWD_FILTER_ALGS]);
521
      PADDLE_ENFORCE_CUDA_SUCCESS(
522 523 524 525 526 527 528
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm_v7(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(), kNUM_CUDNN_BWD_FILTER_ALGS,
              &perf_count, perf_results.get()));
      algo = (perf_results.get())[best_algo_idx].algo;
      workspace_size = GetWorkspaceSize(args, algo);
      if (workspace_size > workspace_size_limit) {
529
        workspace_size = workspace_size_limit;
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
#if CUDNN_VERSION >= 8000
        // cudnnGetConvolutionBackwardFilterAlgorithm is removed in CUDNN-8
        ChooseAlgoByWorkspace<perf_t, algo_t>(perf_results.get(),
                                              kNUM_CUDNN_BWD_FILTER_ALGS,
                                              workspace_size_limit, &algo);
#else
        VLOG(1) << "Fallback to non-v7 method to find conv algorithm becasue "
                   "the workspace size request("
                << workspace_size << ") exceeds the limit("
                << workspace_size_limit << ")";
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                args.handle, args.idesc.desc(), args.odesc.desc(),
                args.cdesc.desc(), args.wdesc.desc(),
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &algo));
#endif
547 548
      }
#else
549
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
550 551 552 553 554
          platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
              args.handle, args.idesc.desc(), args.odesc.desc(),
              args.cdesc.desc(), args.wdesc.desc(),
              CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
              workspace_size_limit, &algo));
555
#endif
Q
qingqing01 已提交
556 557 558 559 560 561
    } else if (deterministic) {
      return CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
    } else {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();
562
      AlgorithmsCache<algo_t>& algo_cache =
563
          *(framework::ConvSearchCache::Instance().GetBackwardFilter());
Q
qingqing01 已提交
564 565 566 567

      auto x_dims = framework::vectorize(args.x->dims());
      auto w_dims = framework::vectorize(args.w->dims());

568 569 570
      VLOG(10) << "cudnnConvolutionFwdAlgoPerf_t:"
               << ", x_dims:" << x_dims << ", w_dims:" << w_dims << ", args.s"
               << args.s << ", args.p" << args.p << ", args.d" << args.d;
571 572 573 574 575
      if (dtype != CUDNN_DATA_HALF) {
        algo = algo_cache.GetAlgorithm(
            x_dims, w_dims, args.s, args.p, args.d, 0,
            static_cast<int64_t>(args.cudnn_dtype), [&]() {
              int returned_algo_count;
576
              std::array<perf_t, kNUM_CUDNN_BWD_FILTER_ALGS> perf_stat;
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
              auto cudnn_find_func = [&](void* cudnn_workspace_ptr) {
                PADDLE_ENFORCE_CUDA_SUCCESS(
                    platform::dynload::
                        cudnnFindConvolutionBackwardFilterAlgorithmEx(
                            args.handle, args.idesc.desc(), args.x->data<T>(),
                            args.odesc.desc(), args.o->data<T>(),
                            args.cdesc.desc(), args.wdesc.desc(),
                            const_cast<T*>(args.w->data<T>()),
                            kNUM_CUDNN_BWD_FILTER_ALGS, &returned_algo_count,
                            perf_stat.data(), cudnn_workspace_ptr,
                            workspace_size_limit));
              };
              workspace_handle.RunFuncSync(cudnn_find_func,
                                           workspace_size_limit);

              VLOG(3)
                  << "BwdFilterAlgo Perf result: (algo: stat, time, memory)";
              for (int i = 0; i < returned_algo_count; ++i) {
                const auto& stat = perf_stat[i];
                VLOG(3) << stat.algo << ": " << stat.status << " " << stat.time
                        << " " << stat.memory;
              }
              return perf_stat[0].algo;
            });
      } else {
        auto max_algos = MaxBwdFilterAlgos(args.handle);
        algo = algo_cache.GetAlgorithm(
            x_dims, w_dims, args.s, args.p, args.d, 0,
            static_cast<int64_t>(args.cudnn_dtype), [&]() {
              algo_t chosen_algo;
              std::vector<perf_t> perf_results(max_algos);
              int actual_algos = 0;
609
              PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
610
                  platform::dynload::
611 612
                      cudnnFindConvolutionBackwardFilterAlgorithm(
                          args.handle, args.idesc.desc(), args.odesc.desc(),
Q
qingqing01 已提交
613
                          args.cdesc.desc(), args.wdesc.desc(),
614 615 616 617 618 619 620 621
                          perf_results.size(), &actual_algos,
                          perf_results.data()));
              perf_results.resize(actual_algos);
              ChooseAlgo<perf_t, algo_t>(perf_results, workspace_size_limit,
                                         &chosen_algo);
              return chosen_algo;
            });
      }
Q
qingqing01 已提交
622 623 624 625 626 627 628
    }
    VLOG(3) << "choose algo " << algo;
    return algo;
  }

  static size_t GetWorkspaceSize(const ConvArgs& args, algo_t algo) {
    size_t workspace_size = 0;
629
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
630 631 632 633 634 635 636 637 638
        platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
            args.handle, args.idesc.desc(), args.odesc.desc(),
            args.cdesc.desc(), args.wdesc.desc(), algo, &workspace_size));
    return workspace_size;
  }
};

}  // namespace operators
}  // namespace paddle