trainer_desc.py 10.7 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xujiaqi01 已提交
14
"""Defination of trainers."""
15

H
hutuxian 已提交
16
import sys
17
import os
H
hutuxian 已提交
18
__all__ = ['TrainerDesc', 'MultiTrainer', 'DistMultiTrainer', 'PipelineTrainer']
19 20 21


class TrainerDesc(object):
T
Thunderbrook 已提交
22 23 24 25 26
    '''
    Set proto from python to c++.
    Can be initialized from train_desc.
    '''

27 28 29 30 31 32
    def __init__(self):
        '''
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        with open(proto_file, 'r') as f:
            text_format.Parse(f.read(), self.proto_desc)
        '''
H
hutuxian 已提交
33 34
        # Workaround for relative import in protobuf under python3
        # TODO: should be fixed
35
        cur_path = os.path.dirname(__file__)
H
hutuxian 已提交
36 37 38 39
        if cur_path not in sys.path:
            sys.path.append(cur_path)
        if cur_path + "/proto" not in sys.path:
            sys.path.append(cur_path + "/proto")
40

41
        from proto import trainer_desc_pb2
42
        self.proto_desc = trainer_desc_pb2.TrainerDesc()
D
dongdaxiang 已提交
43 44 45
        import multiprocessing as mp
        # set default thread num == cpu count
        self.proto_desc.thread_num = mp.cpu_count()
D
dongdaxiang 已提交
46 47 48 49
        self._fleet_desc = None
        self._device_worker = None
        self._program = None
        self._infer = False
50

51
    def _set_fetch_var_and_info(self, fetch_vars, fetch_info, print_period):
52 53
        # convert fetch_info to list
        fetch_info = list(fetch_info)
D
dongdaxiang 已提交
54 55 56 57 58
        for i, v in enumerate(fetch_vars):
            self.proto_desc.fetch_config.fetch_var_names.extend([v.name])
            self.proto_desc.fetch_config.fetch_var_str_format.extend(
                [fetch_info[i]])
        self.proto_desc.fetch_config.print_period = print_period
D
dongdaxiang 已提交
59

60
    def _set_debug(self, debug):
61 62
        self.proto_desc.debug = debug

63
    def _set_thread(self, thread_num):
64 65
        self.proto_desc.thread_num = thread_num

66
    def _set_device_worker(self, device_worker):
D
dongdaxiang 已提交
67
        self._device_worker = device_worker
68

69
    def _set_infer(self, infer):
D
dongdaxiang 已提交
70
        self._infer = infer
71

72
    def _set_fleet_desc(self, fleet_desc):
D
dongdaxiang 已提交
73
        self._fleet_desc = fleet_desc
74

75
    def _gen_trainer_desc(self):
76 77
        pass

78
    def _set_program(self, program):
D
dongdaxiang 已提交
79
        self._program = program
D
dongdaxiang 已提交
80

81 82 83
    def _set_use_cvm(self, use_cvm=False):
        self.proto_desc.use_cvm = use_cvm

84 85 86
    def _set_no_cvm(self, no_cvm=False):
        self.proto_desc.no_cvm = no_cvm

87 88 89 90
    def _set_scale_sparse_grad_with_batch_size(
            self, scale_sparse_gradient_with_batch_size=True):
        self.proto_desc.scale_sparse_gradient_with_batch_size = scale_sparse_gradient_with_batch_size

91 92 93
    def _set_scale_datanorm(self, scale_datanorm=-1):
        self.proto_desc.scale_datanorm = scale_datanorm

T
Thunderbrook 已提交
94 95 96
    def _set_dump_slot(self, dump_slot):
        self.proto_desc.dump_slot = dump_slot

97 98 99
    def _set_mpi_rank(self, mpi_rank):
        self.proto_desc.mpi_rank = mpi_rank

T
Thunderbrook 已提交
100 101 102
    def _set_mpi_size(self, mpi_size):
        self.proto_desc.mpi_size = mpi_size

103 104 105 106 107 108 109
    def _set_dump_fields(self, dump_fields):
        for field in dump_fields:
            self.proto_desc.dump_fields.append(field)

    def _set_dump_fields_path(self, path):
        self.proto_desc.dump_fields_path = path

T
Thunderbrook 已提交
110 111 112
    def _set_dump_file_num(self, dump_file_num):
        self.proto_desc.dump_file_num = dump_file_num

113 114 115
    def _set_user_define_dump_filename(self, user_define_dump_filename):
        self.proto_desc.user_define_dump_filename = user_define_dump_filename

116 117 118
    def _set_dump_converter(self, converter):
        self.proto_desc.dump_converter = converter

119 120 121 122
    def _set_dump_param(self, dump_param):
        for param in dump_param:
            self.proto_desc.dump_param.append(param)

123 124 125
    def _set_thread_barrier(self, thread_barrier):
        self.proto_desc.thread_barrier = thread_barrier

126 127 128 129
    def _set_check_nan_var_names(self, check_nan_var_names):
        for var in check_nan_var_names:
            self.proto_desc.check_nan_var_names.append(var)

130 131 132 133
    def _set_loss_names(self, loss_names):
        for loss in loss_names:
            self.proto_desc.loss_names.append(loss)

134 135 136
    def _set_dump_prob(self, dump_prob):
        self.proto_desc.dump_prob = dump_prob

137 138 139 140 141 142 143 144 145 146 147 148
    def _set_adjust_ins_weight(self, config_dict):
        self.proto_desc.adjust_ins_weight_config.need_adjust = \
                config_dict.get("need_adjust", False)
        self.proto_desc.adjust_ins_weight_config.nid_slot = \
                config_dict.get("nid_slot", "")
        self.proto_desc.adjust_ins_weight_config.nid_adjw_threshold = \
                config_dict.get("nid_adjw_threshold", 0.0)
        self.proto_desc.adjust_ins_weight_config.nid_adjw_ratio = \
                config_dict.get("nid_adjw_ratio", 0.0)
        self.proto_desc.adjust_ins_weight_config.ins_weight_slot = \
                config_dict.get("ins_weight_slot", "")

X
xujiaqi01 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    def _set_copy_table_config(self, config_dict):
        config = self.proto_desc.copy_table_config
        config.need_copy = config_dict.get("need_copy", False)
        config.batch_num = config_dict.get("batch_num", 100)

        src_sparse_tables = config_dict.get("src_sparse_tables", [])
        if not isinstance(src_sparse_tables, list):
            src_sparse_tables = [src_sparse_tables]
        dest_sparse_tables = config_dict.get("dest_sparse_tables", [])
        if not isinstance(dest_sparse_tables, list):
            dest_sparse_tables = [dest_sparse_tables]
        if len(src_sparse_tables) != len(dest_sparse_tables):
            raise ValueError(
                "len(src_sparse_tables) != len(dest_sparse_tables)," \
                " %s vs %s" % (len(src_sparse_tables), \
                len(dest_sparse_tables)))
        for i in src_sparse_tables:
            config.src_sparse_tables.append(i)
        for i in dest_sparse_tables:
            config.dest_sparse_tables.append(i)

        src_dense_tables = config_dict.get("src_dense_tables", [])
        if not isinstance(src_dense_tables, list):
            src_dense_tables = [src_dense_tables]
        dest_dense_tables = config_dict.get("dest_dense_tables", [])
        if not isinstance(dest_dense_tables, list):
            dest_dense_tables = [dest_dense_tables]
        if len(src_dense_tables) != len(dest_dense_tables):
            raise ValueError(
                "len(src_dense_tables) != len(dest_dense_tables)," \
                " %s vs %s" % (len(src_dense_tables), \
                len(dest_dense_tables)))
        for i in src_dense_tables:
            config.src_dense_tables.append(i)
        for i in dest_dense_tables:
            config.dest_dense_tables.append(i)

        # user can also specify dense variables to copy,
        # instead of copy dense table
        src_var_list = config_dict.get("src_var_list", [])
        if not isinstance(src_var_list, list):
            src_var_list = [src_var_list]
        dest_var_list = config_dict.get("dest_var_list", [])
        if not isinstance(dest_var_list, list):
            dest_var_list = [dest_var_list]
        if len(src_var_list) != len(dest_var_list):
            raise ValueError(
                "len(src_var_list) != len(dest_var_list), %s vs" \
                " %s" % (len(src_var_list), len(dest_var_list)))
        for i in src_var_list:
            config.src_var_list.append(i)
        for i in dest_var_list:
            config.dest_var_list.append(i)

        dependency_map = config_dict.get("dependency_map", {})
        for key in dependency_map:
            m = config.table_denpendency_map.add()
            m.key = key
            values = dependency_map[key]
            if not isinstance(values, list):
                values = [values]
            if len(values) != 1:
                raise ValueError("dependency len %s != 1" % len(values))
            for value in values:
                m.values.append(value)
        config.dense_pull_after_copy = \
            config_dict.get("dense_pull_after_copy", True)
        config.enable_dependency = \
            config_dict.get("enable_dependency", False)
        config.sparse_copy_by_feasign = \
            config_dict.get("sparse_copy_by_feasign", True)

221
    def _desc(self):
D
dongdaxiang 已提交
222
        from google.protobuf import text_format
H
hutuxian 已提交
223
        return self.proto_desc.SerializeToString()
224

H
hutuxian 已提交
225
    def __str__(self):
226 227
        from google.protobuf import text_format
        return text_format.MessageToString(self.proto_desc)
H
hutuxian 已提交
228

229 230

class MultiTrainer(TrainerDesc):
T
Thunderbrook 已提交
231 232 233 234 235
    '''
    Implement of MultiTrainer.
    Can be init from TrainerDesc.
    '''

D
dongdaxiang 已提交
236
    def __init__(self):
237
        super(MultiTrainer, self).__init__()
D
dongdaxiang 已提交
238
        pass
239

240
    def _set_program(self, program):
241
        super(MultiTrainer, self)._set_program(program)
D
dongdaxiang 已提交
242
        self._program = program
243

244
    def _gen_trainer_desc(self):
245
        super(MultiTrainer, self)._gen_trainer_desc()
D
dongdaxiang 已提交
246
        self.proto_desc.class_name = "MultiTrainer"
D
fix bug  
dongdaxiang 已提交
247
        self._device_worker._set_infer(self._infer)
248
        self._device_worker._set_program(self._program)
D
dongdaxiang 已提交
249
        self._device_worker._gen_worker_desc(self.proto_desc)
250

251 252

class DistMultiTrainer(TrainerDesc):
X
xujiaqi01 已提交
253 254 255 256 257
    """
    Implement of DistMultiTrainer.
    It's for Distributed training.
    """

258
    def __init__(self):
259
        super(DistMultiTrainer, self).__init__()
260
        pass
261

262
    def _set_program(self, program):
263
        super(DistMultiTrainer, self)._set_program(program)
D
dongdaxiang 已提交
264
        self._program = program
265

266
    def _gen_trainer_desc(self):
267
        super(DistMultiTrainer, self)._gen_trainer_desc()
268
        self.proto_desc.class_name = "DistMultiTrainer"
D
dongdaxiang 已提交
269
        if self._program == None:
270
            raise RuntimeError("None Program")
D
fix bug  
dongdaxiang 已提交
271 272
        self._device_worker._set_infer(self._infer)
        self._device_worker._set_program(self._program)
D
dongdaxiang 已提交
273
        self._device_worker._gen_worker_desc(self.proto_desc)
H
hutuxian 已提交
274 275 276


class PipelineTrainer(TrainerDesc):
X
xujiaqi01 已提交
277 278 279 280 281
    """
    Implement of PipelineTrainer.
    It's for Pipeline.
    """

H
hutuxian 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    def __init__(self):
        super(PipelineTrainer, self).__init__()
        pass

    def _set_program(self, program):
        super(PipelineTrainer, self)._set_program(program)
        self._program = program

    def _gen_trainer_desc(self):
        super(PipelineTrainer, self)._gen_trainer_desc()
        self.proto_desc.class_name = "PipelineTrainer"
        if self._program == None:
            raise RuntimeError("None Program")
        self._device_worker._set_infer(self._infer)
        self._device_worker._set_program(self._program)
        self._device_worker._gen_worker_desc(self.proto_desc)