trainer_desc.py 3.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid.proto import trainer_desc_pb2
16
import ps_pb2 as pslib
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
from google.protobuf import text_format

__all__ = ['TrainerDesc', 'MultiTrainer', 'DistMultiTrainer']


# can be initialized from train_desc, 
class TrainerDesc(object):
    def __init__(self):
        '''
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        with open(proto_file, 'r') as f:
            text_format.Parse(f.read(), self.proto_desc)
        '''
        self.proto_desc = trainer_desc_pb2.TrainerDesc()

    def set_thread(self, thread_num):
        self.proto_desc.thread_num = thread_num

    def set_filelist(self, filelist):
        self.proto_desc.filelist.extend(filelist)

    def set_data_feed(self, datafeed):
        self.proto_desc.data_desc.CopyFrom(datafeed.proto_desc)

    def _desc(self):
        return text_format.MessageToString(self.proto_desc)


class MultiTrainer(TrainerDesc):
46
    def __init__(self, dataset=None, worker="Hogwild"):
47 48 49 50 51 52 53 54 55 56
        super(MultiTrainer, self).__init__()
        if worker == "Hogwild":
            self.proto_desc.device_worker_name = worker + "Worker"
            self.proto_desc.class_name = "MultiTrainer"
        else:
            raise ValueError('ValueError: DeviceWorker %s '
                             'is not supported in MultiTrainer' % worker)


class DistMultiTrainer(TrainerDesc):
57
    def __init__(self, dataset=None, worker='Downpour', fleet_desc=None):
58 59 60 61
        super(DistMultiTrainer, self).__init__()
        if worker == "Downpour":
            self.proto_desc.device_worker_name = worker + "Worker"
            self.proto_desc.class_name = "DistMultiTrainer"
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
            self.proto_desc.data_feed.CopyFrom(dataset)
            downpour = self.proto_desc.downpour_param.add()
            # sparse table should specify:
            sparse_table = downpour.sparse_table.add()
            sparse_table.table_id = \
                         fleet_desc.trainer_param.sparse_table.table_id
            sparse_table.sparse_key_name.CopyFrom(fleet_desc.trainer_param()
                                                  .sparse_table().slot_key())
            sparse_table.sparse_value_name.CopyFrom(fleet_desc.trainer_param(
            ).sparse_table().slot_value())
            sparse_table.sparse_grad_name.CopyFrom(fleet_desc.trainer_param(
            ).sparse_table().slot_gradient())
            sparse_table.emb_dim = fleet_desc.server_param.downpour_server_param.downpour_table_param.accessor.fea_dim - 2
            sparse_table.fea_dim = downpour.emb_dim + 2
            sparse_table.label_var_name = "click"

            # dense table should specify:
            dense_table = downpour.dense_table.add()
            dense_table.table_id = \
                        fleet_desc.trainer_param.dense_table.table_id
            # dense_value_name
            dense_table.dense_value_name.CopyFrom(fleet_desc.trainer_param(
            ).dense_table().dense_variable_name)
            # dense_grad_name
            dense_table.dense_grad_name.CopyFrom(fleet_desc.trainer_param(
            ).dense_table().dense_gradient_name)
            downpour.skipped_ops.extend(fleet_desc.trainer_param.skip_op)
            print(str(self.proto_desc))
90 91 92
        else:
            raise ValueError('ValueError: DeviceWorker %s '
                             'is not supported in DistMultiTrainer' % worker)