hogwild_worker.cc 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/data_type.h"
16
#include "paddle/fluid/framework/device_worker.h"
17
#include "paddle/fluid/framework/device_worker_factory.h"
18
#include "paddle/fluid/operators/distributed/distributed.h"
19
#include "paddle/fluid/platform/cpu_helper.h"
D
dongdaxiang 已提交
20
#include "paddle/fluid/platform/lodtensor_printer.h"
21 22 23 24

namespace paddle {
namespace framework {

25
void HogwildWorker::Initialize(const TrainerDesc &desc) {
D
dongdaxiang 已提交
26
  fetch_config_ = desc.fetch_config();
27 28
  param_ = desc.hogwild_param();
  skip_ops_.resize(param_.skip_ops_size());
29
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
30 31
    skip_ops_[i] = param_.skip_ops(i);
  }
32
  use_cvm_ = desc.use_cvm();
33
  thread_barrier_ = desc.thread_barrier();
34

35 36 37
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }
D
dongdaxiang 已提交
38 39
}

40 41
void HogwildWorker::CreateThreadOperators(const ProgramDesc &program) {
  auto &block = program.Block(0);
42
  op_names_.clear();
43
  for (auto &op_desc : block.AllOps()) {
44 45
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
46
    OperatorBase *local_op_ptr = local_op.release();
47 48 49 50 51
    ops_.push_back(local_op_ptr);
    continue;
  }
}

52 53
void HogwildWorker::CreateThreadScope(const ProgramDesc &program) {
  auto &block = program.Block(0);
54 55 56 57 58

  PADDLE_ENFORCE_NOT_NULL(
      root_scope_, "root_scope should be set before creating thread scope");

  thread_scope_ = &root_scope_->NewScope();
59 60

  for (auto &var : block.AllVars()) {
61
    if (var->Persistable()) {
62
      auto *ptr = root_scope_->Var(var->Name());
63
      InitializeVariable(ptr, var->GetType());
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
      if (stat_var_name_map_.find(var->Name()) != stat_var_name_map_.end() &&
          thread_id_ != 0) {
        int tensor_dim =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>()->numel();
        auto *ptr1 = thread_scope_->Var(var->Name());
        InitializeVariable(ptr1, var->GetType());
        LoDTensor *thread_tensor = ptr1->GetMutable<LoDTensor>();
        LoDTensor *root_tensor =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>();
#define MemsetCallback(cpp_type, proto_type)                     \
  do {                                                           \
    if (root_tensor->type() == proto_type) {                     \
      SetZero<cpp_type>(thread_tensor, root_tensor, tensor_dim); \
    }                                                            \
  } while (0)
        _ForEachDataType_(MemsetCallback);
      }
81
    } else {
82
      auto *ptr = thread_scope_->Var(var->Name());
83 84 85 86 87
      InitializeVariable(ptr, var->GetType());
    }
  }
}

88 89 90 91 92 93 94
template <typename T>
void HogwildWorker::SetZero(LoDTensor *tensor, LoDTensor *root_tensor,
                            int tensor_dim) {
  T *ptr = tensor->mutable_data<T>(root_tensor->dims(), platform::CPUPlace());
  memset(ptr, 0, sizeof(T) * tensor_dim);
}

95
void HogwildWorker::BindingDataFeedMemory() {
96
  const std::vector<std::string> &input_feed =
97
      device_reader_->GetUseSlotAlias();
98
  for (auto name : input_feed) {
99
    device_reader_->AddFeedVar(thread_scope_->FindVar(name), name);
100 101 102
  }
}

103
void HogwildWorker::CreateDeviceResource(const ProgramDesc &main_prog) {
104 105 106 107 108 109
  CreateThreadScope(main_prog);
  CreateThreadOperators(main_prog);
}

void HogwildWorker::TrainFilesWithProfiler() {
  platform::SetNumThreads(1);
110
  device_reader_->Start();
111 112
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
113
  for (auto &op : ops_) {
114 115 116 117 118 119 120 121 122 123 124 125
    op_name.push_back(op->Type());
  }
  op_total_time.resize(ops_.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
  timeline.Start();
D
dongdaxiang 已提交
126
  uint64_t total_inst = 0;
127
  while ((cur_batch = device_reader_->Next()) > 0) {
128
    VLOG(3) << "read a batch in thread " << thread_id_;
129 130 131 132
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    for (size_t i = 0; i < ops_.size(); ++i) {
133 134 135 136 137 138 139
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (ops_[i]->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
140
      timeline.Start();
141
      VLOG(3) << "Going to run op " << op_name[i];
142 143 144
      if (!need_skip) {
        ops_[i]->Run(*thread_scope_, place_);
      }
145
      VLOG(3) << "Op " << op_name[i] << " Finished";
146 147 148 149
      timeline.Pause();
      op_total_time[i] += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
    }
150 151

    if (need_dump_field_) {
H
hutuxian 已提交
152 153 154 155
      DumpField(*thread_scope_, dump_mode_, dump_interval_);
    }
    if (need_dump_param_ && thread_id_ == 0) {
      DumpParam(*thread_scope_, batch_cnt);
156 157
    }

D
dongdaxiang 已提交
158
    total_inst += cur_batch;
159
    ++batch_cnt;
D
dongdaxiang 已提交
160
    PrintFetchVars();
161 162 163 164 165 166 167
    if (thread_id_ == 0) {
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < ops_.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
D
dongdaxiang 已提交
168
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
D
dongdaxiang 已提交
169
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
170 171
      }
    }
D
dongdaxiang 已提交
172
    thread_scope_->DropKids();
173 174
    timeline.Start();
  }
175

H
hutuxian 已提交
176
  if (need_dump_field_ || need_dump_param_) {
177 178 179
    writer_.Flush();
  }

180 181 182 183 184 185
#ifdef PADDLE_WITH_DISTRIBUTE
  if (thread_barrier_) {
    operators::distributed::Communicator::GetInstance()
        ->BarrierTriggerDecrement();
  }
#endif
186 187 188 189 190 191
}

void HogwildWorker::TrainFiles() {
  platform::SetNumThreads(1);

  // how to accumulate fetched values here
192
  device_reader_->Start();
193
  int cur_batch;
194
  while ((cur_batch = device_reader_->Next()) > 0) {
195
    for (auto &op : ops_) {
196 197 198 199 200 201 202 203 204 205
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
206 207
    }

D
dongdaxiang 已提交
208
    PrintFetchVars();
D
dongdaxiang 已提交
209
    thread_scope_->DropKids();
210
  }
211 212 213 214 215 216
#ifdef PADDLE_WITH_DISTRIBUTE
  if (thread_barrier_) {
    operators::distributed::Communicator::GetInstance()
        ->BarrierTriggerDecrement();
  }
#endif
217 218
}

D
dongdaxiang 已提交
219 220 221 222
void HogwildWorker::PrintFetchVars() {
  // call count
  batch_num_++;
  int batch_per_print = fetch_config_.print_period();
D
dongdaxiang 已提交
223
  if (thread_id_ == 0) {
D
dongdaxiang 已提交
224 225
    if (batch_num_ % batch_per_print == 0) {
      int fetch_var_num = fetch_config_.fetch_var_names_size();
D
dongdaxiang 已提交
226
      for (int i = 0; i < fetch_var_num; ++i) {
D
dongdaxiang 已提交
227
        platform::PrintVar(thread_scope_, fetch_config_.fetch_var_names(i),
D
dongdaxiang 已提交
228
                           fetch_config_.fetch_var_str_format(i));
D
dongdaxiang 已提交
229 230 231 232 233
      }
    }
  }
}

234 235
}  // end namespace framework
}  // end namespace paddle