test_prelu_op.py 3.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Z
zchen0211 已提交
17 18
import unittest
import numpy as np
M
minqiyang 已提交
19
import six
20
from op_test import OpTest, skip_check_grad_ci
Z
zchen0211 已提交
21 22


Z
zchen0211 已提交
23
class PReluTest(OpTest):
Z
zchen0211 已提交
24
    def setUp(self):
25 26
        self.init_input_shape()
        self.init_attr()
Z
zchen0211 已提交
27
        self.op_type = "prelu"
J
jerrywgz 已提交
28

29
        x_np = np.random.uniform(-1, 1, self.x_shape).astype("float32")
J
jerrywgz 已提交
30 31 32 33 34 35 36 37 38 39 40
        # Since zero point in prelu is not differentiable, avoid randomize
        # zero.
        x_np[np.abs(x_np) < 0.005] = 0.02

        if self.attrs == {'mode': "all"}:
            alpha_np = np.random.rand(1).astype("float32")
            self.inputs = {'X': x_np, 'Alpha': alpha_np}
        elif self.attrs == {'mode': "channel"}:
            alpha_np = np.random.rand(1, x_np.shape[1], 1, 1).astype("float32")
            self.inputs = {'X': x_np, 'Alpha': alpha_np}
        else:
41 42
            alpha_np = np.random.rand(1, x_np.shape[1], x_np.shape[2],
                                      x_np.shape[3]).astype("float32")
J
jerrywgz 已提交
43 44
            self.inputs = {'X': x_np, 'Alpha': alpha_np}

Z
zchen0211 已提交
45
        out_np = np.maximum(self.inputs['X'], 0.)
Z
zchen0211 已提交
46 47
        out_np = out_np + np.minimum(self.inputs['X'],
                                     0.) * self.inputs['Alpha']
Z
zchen0211 已提交
48 49
        assert out_np is not self.inputs['X']
        self.outputs = {'Out': out_np}
Z
zchen0211 已提交
50

51 52 53 54
    def init_input_shape(self):
        self.x_shape = (2, 100, 3, 4)

    def init_attr(self):
J
jerrywgz 已提交
55 56
        self.attrs = {'mode': "channel"}

57
    def test_check_output(self):
Z
zchen0211 已提交
58 59
        self.check_output()

60
    def test_check_grad_1_ignore_x(self):
J
jerrywgz 已提交
61 62
        self.check_grad(['Alpha'], 'Out', no_grad_set=set('X'))

63 64
    def test_check_grad_2(self):
        self.check_grad(['X', 'Alpha'], 'Out')
J
jerrywgz 已提交
65

66 67
    def test_check_grad_3_ignore_alpha(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Alpha'))
J
jerrywgz 已提交
68 69


70
# TODO(minqiyang): Resume these test cases after fixing Python3 CI job issues
M
minqiyang 已提交
71
if six.PY2:
J
jerrywgz 已提交
72

73 74 75 76 77 78 79 80
    @skip_check_grad_ci(
        reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode"
    )
    class TestModeAll(PReluTest):
        def init_input_shape(self):
            self.x_shape = (2, 3, 4, 5)

        def init_attr(self):
M
minqiyang 已提交
81 82
            self.attrs = {'mode': "all"}

83 84 85
    class TestModeElt(PReluTest):
        def init_input_shape(self):
            self.x_shape = (3, 2, 5, 10)
M
minqiyang 已提交
86

87
        def init_attr(self):
M
minqiyang 已提交
88
            self.attrs = {'mode': "element"}
Z
zchen0211 已提交
89 90 91 92


if __name__ == "__main__":
    unittest.main()