# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import six from op_test import OpTest, skip_check_grad_ci class PReluTest(OpTest): def setUp(self): self.init_input_shape() self.init_attr() self.op_type = "prelu" x_np = np.random.uniform(-1, 1, self.x_shape).astype("float32") # Since zero point in prelu is not differentiable, avoid randomize # zero. x_np[np.abs(x_np) < 0.005] = 0.02 if self.attrs == {'mode': "all"}: alpha_np = np.random.rand(1).astype("float32") self.inputs = {'X': x_np, 'Alpha': alpha_np} elif self.attrs == {'mode': "channel"}: alpha_np = np.random.rand(1, x_np.shape[1], 1, 1).astype("float32") self.inputs = {'X': x_np, 'Alpha': alpha_np} else: alpha_np = np.random.rand(1, x_np.shape[1], x_np.shape[2], x_np.shape[3]).astype("float32") self.inputs = {'X': x_np, 'Alpha': alpha_np} out_np = np.maximum(self.inputs['X'], 0.) out_np = out_np + np.minimum(self.inputs['X'], 0.) * self.inputs['Alpha'] assert out_np is not self.inputs['X'] self.outputs = {'Out': out_np} def init_input_shape(self): self.x_shape = (2, 100, 3, 4) def init_attr(self): self.attrs = {'mode': "channel"} def test_check_output(self): self.check_output() def test_check_grad_1_ignore_x(self): self.check_grad(['Alpha'], 'Out', no_grad_set=set('X')) def test_check_grad_2(self): self.check_grad(['X', 'Alpha'], 'Out') def test_check_grad_3_ignore_alpha(self): self.check_grad(['X'], 'Out', no_grad_set=set('Alpha')) # TODO(minqiyang): Resume these test cases after fixing Python3 CI job issues if six.PY2: @skip_check_grad_ci( reason="[skip shape check] Input(Alpha) must be 1-D and only has one data in 'all' mode" ) class TestModeAll(PReluTest): def init_input_shape(self): self.x_shape = (2, 3, 4, 5) def init_attr(self): self.attrs = {'mode': "all"} class TestModeElt(PReluTest): def init_input_shape(self): self.x_shape = (3, 2, 5, 10) def init_attr(self): self.attrs = {'mode': "element"} if __name__ == "__main__": unittest.main()