test_GpuProfiler.cpp 4.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
L
liaogang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_ONLY_CPU

#include "paddle/utils/Util.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
#include <gtest/gtest.h>
#include "paddle/gserver/tests/TestUtil.h"
#include "paddle/utils/Stat.h"

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

void MatrixCheckErr(const Matrix& matrix1, const Matrix& matrix2) {
  CHECK(matrix1.getHeight() == matrix2.getHeight());
  CHECK(matrix1.getWidth() == matrix2.getWidth());
#ifndef PADDLE_TYPE_DOUBLE
  real err = 1e-3;
#else
  real err = 1e-10;
#endif

  int height = matrix1.getHeight();
  int width = matrix1.getWidth();
  const real* data1 = matrix1.getData();
  const real* data2 = matrix2.getData();
  int count = 0;
  for (int i = 0; i < height; i++) {
    for (int j = 0; j < width; j++) {
      real a = data1[i * width + j];
      real b = data2[i * width + j];
      if (fabs(a - b) > err) {
        if ((fabsf(a - b) / fabsf(a)) > (err / 10.0f)) {
          count++;
        }
      }
    }
  }
  EXPECT_EQ(count, 0) << "There are " << count << " different element.";
}

void testBilinearFwdBwd(int numSamples, int imgSizeH, int imgSizeW,
                        int channels) {
  int inWidth = imgSizeH * imgSizeW * channels;
  int outWidth = 2 * imgSizeH * 2 * imgSizeW * channels;
  real ratioH = 0.5;
  real ratioW = 0.5;

  // forward
  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);

  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);
  MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false);

  input->randomizeUniform();
  inputGpu->copyFrom(*input);

73 74 75 76 77 78 79 80
  {
    // nvprof: GPU Proflier
    REGISTER_GPU_PROFILER("testBilinearFwdBwd");
    target->bilinearForward(*input, imgSizeH, imgSizeW,
        2 * imgSizeH, 2 * imgSizeW, channels, ratioH, ratioW);
    targetGpu->bilinearForward(*inputGpu, imgSizeH, imgSizeW,
        2 * imgSizeH, 2 * imgSizeW, channels, ratioH, ratioW);
  }
L
liaogang 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110

  // check
  targetCheck->copyFrom(*targetGpu);
  MatrixCheckErr(*target, *targetCheck);

  // backward
  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);

  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
  MatrixPtr targetGpuGrad = GpuMatrix::create(numSamples, outWidth, false,
                                              true);
  MatrixPtr targetCheckGrad =
      CpuMatrix::create(numSamples, inWidth, false, false);

  inputGrad->randomizeUniform();
  targetGrad->randomizeUniform();
  inputGpuGrad->copyFrom(*inputGrad);
  targetGpuGrad->copyFrom(*targetGrad);

  inputGrad->bilinearBackward(*targetGrad, 2 * imgSizeH, 2 * imgSizeW,
      imgSizeH, imgSizeW, channels, ratioH, ratioW);
  inputGpuGrad->bilinearBackward(*targetGpuGrad, 2 * imgSizeH, 2 * imgSizeW,
      imgSizeH, imgSizeW, channels, ratioH, ratioW);

  // check
  targetCheckGrad->copyFrom(*inputGpuGrad);
  MatrixCheckErr(*inputGrad, *targetCheckGrad);
}

111
TEST(Profiler, testBilinearFwdBwd) {
L
liaogang 已提交
112 113 114
  auto numSamples = 10;
  auto channels = 16;
  auto imgSize = 64;
L
liaogang 已提交
115 116
  {
    // nvprof: GPU Proflier
117
    REGISTER_GPU_PROFILER("testBilinearFwdBwd");
L
liaogang 已提交
118 119 120 121 122
    // Paddle built-in timer
    REGISTER_TIMER_INFO("testBilinearFwdBwd",
      "numSamples = 10, channels = 16, imgSizeX = 64, imgSizeY = 64");
    testBilinearFwdBwd(numSamples, imgSize, imgSize, channels);
  }
123
  globalStat.printAllStatus();
L
liaogang 已提交
124 125 126 127 128
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
129 130 131 132 133

  // nvprof: GPU Proflier
  REGISTER_GPU_PROFILER("RecursiveProfilingTest",
    "numSamples = 10, channels = 16, imgSizeX = 64, imgSizeY = 64");

L
liaogang 已提交
134 135 136 137
  return RUN_ALL_TESTS();
}

#endif /* PADDLE_ONLY_CPU */