ps_gpu_trainer.cc 17.7 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <google/protobuf/text_format.h>
T
Thunderbrook 已提交
16 17 18
#include <cstdlib>
#include <string>
#include <vector>
19

T
Thunderbrook 已提交
20 21 22 23
#include "io/fs.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h"
24
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
T
Thunderbrook 已提交
25
#include "paddle/fluid/framework/trainer.h"
26 27
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL || \
     defined PADDLE_WITH_XPU_BKCL) &&                        \
28
    (defined PADDLE_WITH_PSLIB)
29
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
30
#include "paddle/fluid/platform/cuda_device_guard.h"
31
#endif
T
Thunderbrook 已提交
32 33 34 35 36 37

namespace paddle {
namespace framework {

void PSGPUTrainer::Initialize(const TrainerDesc& trainer_desc,
                              Dataset* dataset) {
T
Thunderbrook 已提交
38
  SetDataset(dataset);
T
Thunderbrook 已提交
39 40
  thread_num_ = trainer_desc.thread_num();
  param_ = trainer_desc.downpour_param();
T
Thunderbrook 已提交
41 42 43
  ParseDumpConfig(trainer_desc);
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
T
Thunderbrook 已提交
44 45 46 47 48 49 50 51
  for (int i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }
52 53 54 55 56 57 58 59 60 61
  InitializeGPUServer(trainer_desc);
  scale_datanorm_ = trainer_desc.scale_datanorm();
  int place_num = trainer_desc.worker_places_size();
  const std::vector<paddle::framework::DataFeed*> readers =
      dataset->GetReaders();
  dump_file_num_ = trainer_desc.dump_file_num();
  user_define_dump_filename_ = trainer_desc.user_define_dump_filename();
  std::vector<int> dev_ids;
  for (int i = 0; i < place_num; ++i) {
    int num = trainer_desc.worker_places(i);
62
#ifdef PADDLE_WITH_CUDA
63
    platform::CUDAPlace place = platform::CUDAPlace(num);
64 65 66 67
#endif
#ifdef PADDLE_WITH_XPU_KP
    platform::XPUPlace place = platform::XPUPlace(num);
#endif
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    places_.push_back(place);
    dev_ids.push_back(num);
  }
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
  VLOG(3) << "going to initialize pull dense worker";
  SetDebug(trainer_desc.debug());
  trainer_desc_ = trainer_desc;
  workers_.resize(place_num);
  for (int i = 0; i < place_num; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
    workers_[i]->SetDataFeed(readers[i]);
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetReaderPlace(places_[i]);
    workers_[i]->Initialize(trainer_desc);
    workers_[i]->SetWorkerNum(place_num);
  }
  return;
}

void PSGPUTrainer::InitializeGPUServer(const TrainerDesc& trainer_desc) {
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  // add for hbmps optimizer config
  auto fleet_desc_str = trainer_desc.fleet_desc();
  google::protobuf::TextFormat::ParseFromString(fleet_desc_str, &_ps_param);
  auto sparse_table =
      _ps_param.server_param().downpour_server_param().downpour_table_param(0);
  auto sparse_table_accessor = sparse_table.accessor();
  auto sparse_table_accessor_parameter =
      sparse_table_accessor.downpour_accessor_param();
  auto accessor_class = sparse_table_accessor.accessor_class();
  // gpups' sparse table optimizer config
  // now only support single sparse table
  // auto sparse_table = param_.sparse_table(0);
  std::unordered_map<std::string, float> config;
  if (accessor_class == "DownpourFeatureValueAccessor" ||
      accessor_class == "DownpourCtrAccessor" ||
      accessor_class == "DownpourCtrDoubleAccessor") {
    config["nonclk_coeff"] = sparse_table_accessor_parameter.nonclk_coeff();
    config["clk_coeff"] = sparse_table_accessor_parameter.click_coeff();
    config["learning_rate"] =
        sparse_table_accessor.sparse_sgd_param().learning_rate();
    config["initial_g2sum"] =
        sparse_table_accessor.sparse_sgd_param().initial_g2sum();
    config["initial_range"] =
        sparse_table_accessor.sparse_sgd_param().initial_range();
    if (sparse_table_accessor.sparse_sgd_param().weight_bounds_size() == 2) {
      config["min_bound"] =
          sparse_table_accessor.sparse_sgd_param().weight_bounds()[0];
      config["max_bound"] =
          sparse_table_accessor.sparse_sgd_param().weight_bounds()[1];
    }
    config["mf_create_thresholds"] = sparse_table_accessor.embedx_threshold();
  } else if (accessor_class == "DownpourSparseValueAccessor") {
    auto optimizer_name = sparse_table_accessor.sparse_commonsgd_param().name();
    if (optimizer_name == "naive") {
      config["learning_rate"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .naive()
                                    .learning_rate();
      config["initial_range"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .naive()
                                    .initial_range();
      if (sparse_table_accessor.sparse_commonsgd_param()
              .naive()
              .weight_bounds_size() == 2) {
        config["min_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .naive()
                                  .weight_bounds()[0];
        config["max_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .naive()
                                  .weight_bounds()[1];
      }
    } else if (optimizer_name == "adagrad") {
      config["learning_rate"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .adagrad()
                                    .learning_rate();
      config["initial_range"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .adagrad()
                                    .initial_range();
      config["initial_g2sum"] = sparse_table_accessor.sparse_commonsgd_param()
                                    .adagrad()
                                    .initial_g2sum();
      if (sparse_table_accessor.sparse_commonsgd_param()
              .adagrad()
              .weight_bounds_size() == 2) {
        config["min_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .adagrad()
                                  .weight_bounds()[0];
        config["max_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .adagrad()
                                  .weight_bounds()[1];
      }
    } else if (optimizer_name == "adam") {
      config["learning_rate"] =
          sparse_table_accessor.sparse_commonsgd_param().adam().learning_rate();
      config["initial_range"] =
          sparse_table_accessor.sparse_commonsgd_param().adam().initial_range();
      if (sparse_table_accessor.sparse_commonsgd_param()
              .adam()
              .weight_bounds_size() == 2) {
        config["min_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .adam()
                                  .weight_bounds()[0];
        config["max_bound"] = sparse_table_accessor.sparse_commonsgd_param()
                                  .adam()
                                  .weight_bounds()[1];
      }
    }
  } else if (accessor_class == "DownpourUnitAccessor" ||
             accessor_class == "DownpourDoubleUnitAccessor") {
    config["nonclk_coeff"] = sparse_table_accessor_parameter.nonclk_coeff();
    config["clk_coeff"] = sparse_table_accessor_parameter.click_coeff();
    auto optimizer_name = sparse_table_accessor.embedx_sgd_param().name();
    if (optimizer_name == "naive") {
      config["mf_learning_rate"] =
          sparse_table_accessor.embedx_sgd_param().naive().learning_rate();
      config["mf_initial_range"] =
          sparse_table_accessor.embedx_sgd_param().naive().initial_range();
      if (sparse_table_accessor.embedx_sgd_param()
              .naive()
              .weight_bounds_size() == 2) {
        config["mf_min_bound"] =
            sparse_table_accessor.embedx_sgd_param().naive().weight_bounds()[0];
        config["mf_max_bound"] =
            sparse_table_accessor.embedx_sgd_param().naive().weight_bounds()[1];
      }
    } else if (optimizer_name == "adagrad") {
      config["mf_learning_rate"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().learning_rate();
      config["mf_initial_range"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().initial_range();
      config["mf_initial_g2sum"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().initial_g2sum();
      if (sparse_table_accessor.embedx_sgd_param()
              .adagrad()
              .weight_bounds_size() == 2) {
        config["mf_min_bound"] = sparse_table_accessor.embedx_sgd_param()
                                     .adagrad()
                                     .weight_bounds()[0];
        config["mf_max_bound"] = sparse_table_accessor.embedx_sgd_param()
                                     .adagrad()
                                     .weight_bounds()[1];
      }
    } else if (optimizer_name == "std_adagrad") {
      config["mf_learning_rate"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().learning_rate();
      config["mf_initial_range"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().initial_range();
      config["mf_initial_g2sum"] =
          sparse_table_accessor.embedx_sgd_param().adagrad().initial_g2sum();
      if (sparse_table_accessor.embedx_sgd_param()
              .adagrad()
              .weight_bounds_size() == 2) {
        config["mf_min_bound"] = sparse_table_accessor.embedx_sgd_param()
                                     .adagrad()
                                     .weight_bounds()[0];
        config["mf_max_bound"] = sparse_table_accessor.embedx_sgd_param()
                                     .adagrad()
                                     .weight_bounds()[1];
      }
    } else if (optimizer_name == "adam") {
      config["mf_learning_rate"] =
          sparse_table_accessor.embedx_sgd_param().adam().learning_rate();
      config["mf_initial_range"] =
          sparse_table_accessor.embedx_sgd_param().adam().initial_range();
      if (sparse_table_accessor.embedx_sgd_param()
              .adam()
              .weight_bounds_size() == 2) {
        config["mf_min_bound"] =
            sparse_table_accessor.embedx_sgd_param().adam().weight_bounds()[0];
        config["mf_max_bound"] =
            sparse_table_accessor.embedx_sgd_param().adam().weight_bounds()[1];
      }
    }
    config["mf_create_thresholds"] = sparse_table_accessor.embedx_threshold();
  }

  auto ps_gpu_wrapper = paddle::framework::PSGPUWrapper::GetInstance();
  ps_gpu_wrapper->InitializeGPUServer(config);
T
Thunderbrook 已提交
256 257
}

T
Thunderbrook 已提交
258 259 260 261 262 263 264 265
std::string PSGPUTrainer::GetDumpPath(int tid) {
  if (user_define_dump_filename_ != "") {
    return string::format_string("%s/part-%s-%05d", dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str(), tid);
  }
  return string::format_string("%s/part-%03d-%05d", dump_fields_path_.c_str(),
                               mpi_rank_, tid);
}
T
Thunderbrook 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301

void PSGPUTrainer::RegisterHeterCallback() {
  /*
  auto fleet_ptr = FleetWrapper::GetInstance();
  fleet_ptr->RegisterHeterCallback([this](int worker, int taskid) {
    // workers_[worker]->Schedule(taskid);
  });
  */
}

void PSGPUTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (size_t i = 0; i < places_.size(); ++i) {
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
  for (size_t num = 0; num < places_.size(); ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
        LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
        LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
        TensorCopy(*root_tensor, place, thread_tensor);
      }
    }
  }
302 303 304 305 306 307 308 309 310 311
  for (auto& var : main_program.Block(0).AllVars()) {
    if (var->Persistable()) {
      auto it = std::find(need_merge_var_names_.begin(),
                          need_merge_var_names_.end(), var->Name());
      if (it == need_merge_var_names_.end()) {
        VLOG(2) << "train param: " << var->Name();
        trainable_param_.push_back(var->Name());
      }
    }
  }
T
Thunderbrook 已提交
312 313 314 315
  place_ = place;
  return;
}

T
Thunderbrook 已提交
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
void PSGPUTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (size_t i = 0; i < places_.size(); ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
  }
}

T
Thunderbrook 已提交
334
void PSGPUTrainer::InitOtherEnv(const ProgramDesc& main_program) {
T
Thunderbrook 已提交
335 336 337
  if (need_dump_field_ || need_dump_param_) {
    InitDumpEnv();
  }
T
Thunderbrook 已提交
338 339 340 341 342
  VLOG(3) << "init other env done.";
}

void PSGPUTrainer::Run() {
  for (size_t thidx = 0; thidx < places_.size(); ++thidx) {
343 344 345 346 347 348 349
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
T
Thunderbrook 已提交
350 351 352 353 354 355 356 357
  }
}

Scope* PSGPUTrainer::GetWorkerScope(int thread_id) { return nullptr; }

template <typename T>
void PSGPUTrainer::MergeToRootScope(LoDTensor* root_tensor, LoDTensor* tensor) {
  LoDTensor tmp_root;
358
  TensorCopySync(*root_tensor, platform::CPUPlace(), &tmp_root);
T
Thunderbrook 已提交
359 360
  T* tmp_root_data = tmp_root.data<T>();
  LoDTensor tmp_tensor;
361
  TensorCopySync(*tensor, platform::CPUPlace(), &tmp_tensor);
T
Thunderbrook 已提交
362 363 364 365
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
366 367 368 369 370 371 372 373 374 375 376 377 378
  TensorCopySync(tmp_root, platform::CPUPlace(), root_tensor);
}

void PSGPUTrainer::MergeDenseParam() {
  auto thread_scope = workers_[0]->GetThreadScope();
  for (auto& name : trainable_param_) {
    VLOG(2) << "merge var " << name << " to root scope";
    Variable* root_var = root_scope_->FindVar(name);
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
    Variable* var = thread_scope->FindVar(name);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    TensorCopySync((*tensor), root_tensor->place(), root_tensor);
  }
T
Thunderbrook 已提交
379 380 381 382 383 384 385 386 387 388 389 390
}

void PSGPUTrainer::Finalize() {
  for (auto& th : threads_) {
    th.join();
  }
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
391 392 393
    if (root_tensor == nullptr || !root_tensor->IsInitialized()) {
      continue;
    }
T
Thunderbrook 已提交
394 395 396 397 398 399 400 401
    for (size_t j = 0; j < places_.size(); j++) {
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
      LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
402 403 404
      if (thread_tensor == nullptr || !thread_tensor->IsInitialized()) {
        continue;
      }
T
Thunderbrook 已提交
405 406
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
407 408 409
    if (framework::TransToProtoVarType(root_tensor->dtype()) == proto_type) {  \
      if (framework::TransToProtoVarType(thread_tensor->dtype()) !=            \
          proto_type) {                                                        \
T
Thunderbrook 已提交
410 411
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
412 413
                << ", root tensor type=" << root_tensor->dtype()               \
                << ", thread tensor type=" << thread_tensor->dtype();          \
T
Thunderbrook 已提交
414 415 416 417 418 419 420 421
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
422
  MergeDenseParam();
T
Thunderbrook 已提交
423 424 425
  if (need_dump_field_ || need_dump_param_) {
    FinalizeDumpEnv();
  }
T
Thunderbrook 已提交
426 427 428 429 430
  root_scope_->DropKids();
}
}  // namespace framework
}  // namespace paddle
#endif