ps_gpu_trainer.cc 9.4 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <cstdlib>
#include <string>
#include <vector>
18

T
Thunderbrook 已提交
19 20 21 22 23
#include "io/fs.h"
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"
24 25
#if (defined PADDLE_WITH_NCCL || defined PADDLE_WITH_RCCL) && \
    (defined PADDLE_WITH_PSLIB)
T
Thunderbrook 已提交
26 27 28 29 30 31 32
#include "paddle/fluid/platform/cuda_device_guard.h"

namespace paddle {
namespace framework {

void PSGPUTrainer::Initialize(const TrainerDesc& trainer_desc,
                              Dataset* dataset) {
T
Thunderbrook 已提交
33
  SetDataset(dataset);
T
Thunderbrook 已提交
34 35
  thread_num_ = trainer_desc.thread_num();
  param_ = trainer_desc.downpour_param();
T
Thunderbrook 已提交
36 37 38
  ParseDumpConfig(trainer_desc);
  mpi_rank_ = trainer_desc.mpi_rank();
  mpi_size_ = trainer_desc.mpi_size();
T
Thunderbrook 已提交
39 40 41 42 43 44 45 46 47 48 49 50
  for (int i = 0; i < param_.dense_table_size(); ++i) {
    uint64_t table_id = static_cast<uint64_t>(param_.dense_table(i).table_id());
    auto table = param_.dense_table(i);
    dense_grad_names_[table_id].resize(table.dense_grad_name_size());
    for (int j = 0; j < table.dense_grad_name_size(); ++j) {
      dense_grad_names_[table_id][j] = table.dense_grad_name(j);
    }
  }
  scale_datanorm_ = trainer_desc.scale_datanorm();
  int place_num = trainer_desc.worker_places_size();
  const std::vector<paddle::framework::DataFeed*> readers =
      dataset->GetReaders();
T
Thunderbrook 已提交
51 52
  dump_file_num_ = trainer_desc.dump_file_num();
  user_define_dump_filename_ = trainer_desc.user_define_dump_filename();
T
Thunderbrook 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  std::vector<int> dev_ids;
  for (int i = 0; i < place_num; ++i) {
    int num = trainer_desc.worker_places(i);
    platform::CUDAPlace place = platform::CUDAPlace(num);
    places_.push_back(place);
    dev_ids.push_back(num);
  }
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
  VLOG(3) << "going to initialize pull dense worker";
  SetDebug(trainer_desc.debug());
  trainer_desc_ = trainer_desc;
  workers_.resize(place_num);
  for (int i = 0; i < place_num; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
T
Thunderbrook 已提交
73 74 75 76 77
    workers_[i]->SetNeedDumpField(need_dump_field_);
    workers_[i]->SetNeedDumpParam(need_dump_param_);
    workers_[i]->SetDumpFieldVector(dump_fields_);
    workers_[i]->SetDumpParamVector(dump_param_);
    workers_[i]->InitRandomDumpConfig(trainer_desc);
T
Thunderbrook 已提交
78
    workers_[i]->SetDataFeed(readers[i]);
79 80
    workers_[i]->SetPlace(places_[i]);
    workers_[i]->SetReaderPlace(places_[i]);
T
Thunderbrook 已提交
81 82 83 84 85 86
    workers_[i]->Initialize(trainer_desc);
    workers_[i]->SetWorkerNum(place_num);
  }
  return;
}

T
Thunderbrook 已提交
87 88 89 90 91 92 93 94
std::string PSGPUTrainer::GetDumpPath(int tid) {
  if (user_define_dump_filename_ != "") {
    return string::format_string("%s/part-%s-%05d", dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str(), tid);
  }
  return string::format_string("%s/part-%03d-%05d", dump_fields_path_.c_str(),
                               mpi_rank_, tid);
}
T
Thunderbrook 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

void PSGPUTrainer::RegisterHeterCallback() {
  /*
  auto fleet_ptr = FleetWrapper::GetInstance();
  fleet_ptr->RegisterHeterCallback([this](int worker, int taskid) {
    // workers_[worker]->Schedule(taskid);
  });
  */
}

void PSGPUTrainer::InitTrainerEnv(const ProgramDesc& main_program,
                                  const platform::Place& place) {
  for (size_t i = 0; i < places_.size(); ++i) {
    workers_[i]->SetRootScope(root_scope_);
    workers_[i]->CreateDeviceResource(main_program);  // Program
    workers_[i]->BindingDataFeedMemory();
  }
  for (size_t num = 0; num < places_.size(); ++num) {
    auto place = places_[num];
    Scope* scope = workers_[num]->GetThreadScope();
    auto& block = main_program.Block(0);
    for (auto& var : block.AllVars()) {
      if (var->Persistable()) {
        auto name = var->Name();
        Variable* root_var = root_scope_->FindVar(name);
        if (!root_var) {
          continue;
        }
        LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
        auto* ptr = scope->Var(name);
        InitializeVariable(ptr, proto::VarType::LOD_TENSOR);
        LoDTensor* thread_tensor = ptr->GetMutable<LoDTensor>();
        TensorCopy(*root_tensor, place, thread_tensor);
      }
    }
  }
131 132 133 134 135 136 137 138 139 140
  for (auto& var : main_program.Block(0).AllVars()) {
    if (var->Persistable()) {
      auto it = std::find(need_merge_var_names_.begin(),
                          need_merge_var_names_.end(), var->Name());
      if (it == need_merge_var_names_.end()) {
        VLOG(2) << "train param: " << var->Name();
        trainable_param_.push_back(var->Name());
      }
    }
  }
T
Thunderbrook 已提交
141 142 143 144
  place_ = place;
  return;
}

T
Thunderbrook 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
void PSGPUTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  for (size_t i = 0; i < places_.size(); ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_num_ = 1;
  if (dump_file_num_ > mpi_size_) {
    dump_thread_num_ = dump_file_num_ / mpi_size_;
    if (dump_file_num_ % mpi_size_ > mpi_rank_) {
      dump_thread_num_ += 1;
    }
  }
  for (int i = 0; i < dump_thread_num_; i++) {
    dump_thread_.push_back(
        std::thread(std::bind(&TrainerBase::DumpWork, this, i)));
  }
}

T
Thunderbrook 已提交
163
void PSGPUTrainer::InitOtherEnv(const ProgramDesc& main_program) {
T
Thunderbrook 已提交
164 165 166
  if (need_dump_field_ || need_dump_param_) {
    InitDumpEnv();
  }
T
Thunderbrook 已提交
167 168 169 170 171
  VLOG(3) << "init other env done.";
}

void PSGPUTrainer::Run() {
  for (size_t thidx = 0; thidx < places_.size(); ++thidx) {
172 173 174 175 176 177 178
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
T
Thunderbrook 已提交
179 180 181 182 183 184 185 186
  }
}

Scope* PSGPUTrainer::GetWorkerScope(int thread_id) { return nullptr; }

template <typename T>
void PSGPUTrainer::MergeToRootScope(LoDTensor* root_tensor, LoDTensor* tensor) {
  LoDTensor tmp_root;
187
  TensorCopySync(*root_tensor, platform::CPUPlace(), &tmp_root);
T
Thunderbrook 已提交
188 189
  T* tmp_root_data = tmp_root.data<T>();
  LoDTensor tmp_tensor;
190
  TensorCopySync(*tensor, platform::CPUPlace(), &tmp_tensor);
T
Thunderbrook 已提交
191 192 193 194
  T* data = tmp_tensor.data<T>();
  for (int i = 0; i < tmp_tensor.numel(); i++) {
    tmp_root_data[i] += data[i];
  }
195 196 197 198 199 200 201 202 203 204 205 206 207
  TensorCopySync(tmp_root, platform::CPUPlace(), root_tensor);
}

void PSGPUTrainer::MergeDenseParam() {
  auto thread_scope = workers_[0]->GetThreadScope();
  for (auto& name : trainable_param_) {
    VLOG(2) << "merge var " << name << " to root scope";
    Variable* root_var = root_scope_->FindVar(name);
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
    Variable* var = thread_scope->FindVar(name);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    TensorCopySync((*tensor), root_tensor->place(), root_tensor);
  }
T
Thunderbrook 已提交
208 209 210 211 212 213 214 215 216 217 218 219
}

void PSGPUTrainer::Finalize() {
  for (auto& th : threads_) {
    th.join();
  }
  for (size_t i = 0; i < need_merge_var_names_.size(); i++) {
    Variable* root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor* root_tensor = root_var->GetMutable<LoDTensor>();
220 221 222
    if (root_tensor == nullptr || !root_tensor->IsInitialized()) {
      continue;
    }
T
Thunderbrook 已提交
223 224 225 226 227 228 229 230
    for (size_t j = 0; j < places_.size(); j++) {
      Scope* cur_thread_scope = workers_[j]->GetThreadScope();
      Variable* thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      if (thread_var == nullptr) {
        continue;
      }
      LoDTensor* thread_tensor = thread_var->GetMutable<LoDTensor>();
231 232 233
      if (thread_tensor == nullptr || !thread_tensor->IsInitialized()) {
        continue;
      }
T
Thunderbrook 已提交
234 235
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
236 237 238
    if (framework::TransToProtoVarType(root_tensor->dtype()) == proto_type) {  \
      if (framework::TransToProtoVarType(thread_tensor->dtype()) !=            \
          proto_type) {                                                        \
T
Thunderbrook 已提交
239 240
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
241 242
                << ", root tensor type=" << root_tensor->dtype()               \
                << ", thread tensor type=" << thread_tensor->dtype();          \
T
Thunderbrook 已提交
243 244 245 246 247 248 249 250
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }
251
  MergeDenseParam();
T
Thunderbrook 已提交
252 253 254
  if (need_dump_field_ || need_dump_param_) {
    FinalizeDumpEnv();
  }
T
Thunderbrook 已提交
255 256 257 258 259
  root_scope_->DropKids();
}
}  // namespace framework
}  // namespace paddle
#endif