linalg.py 34.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16
from paddle.common_ops_import import *
Z
Zhang Ting 已提交
17 18
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type
19
from ..fluid.framework import in_dygraph_mode, _varbase_creator
20

21 22
from ..fluid.layers import transpose  #DEFINE_ALIAS

23 24
__all__ = [
    'matmul',
L
liuwei1031 已提交
25
    'dot',
26
    #       'einsum',
27
    'norm',
28
    'transpose',
Z
Zhang Ting 已提交
29
    'dist',
30
    't',
31
    'cross',
G
Guo Sheng 已提交
32
    'cholesky',
33
    #       'tensordot',
Q
Qi Li 已提交
34
    'bmm',
35 36
    'histogram',
    'mv'
37 38 39
]


S
ShenLiang 已提交
40
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
41
    """
42 43
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
44
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
45

S
ShenLiang 已提交
46 47
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
48 49 50 51 52

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
53 54
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
55 56 57 58 59 60 61 62
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

63 64
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
65
      After the matrix multiply, the prepended dimension is removed.
66 67

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
68 69
      the matrix-vector product is obtained.

70 71 72 73 74 75 76 77 78
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
79
      out will be a (j, k, n, p) tensor.
80 81

    Args:
S
ShenLiang 已提交
82 83
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
84 85 86 87 88 89
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
S
ShenLiang 已提交
90
        Tensor: The output Tensor.
91 92 93

    Examples:

S
ShenLiang 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    .. code-block:: python

        import paddle
        import numpy as np

        # vector * vector
        x_data = np.random.random([10]).astype(np.float32)
        y_data = np.random.random([10]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [1]

        # matrix * vector
        x_data = np.random.random([10, 5]).astype(np.float32)
        y_data = np.random.random([5]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [10]

        # batched matrix * broadcasted vector
        x_data = np.random.random([10, 5, 2]).astype(np.float32)
        y_data = np.random.random([2]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [10, 5]

        # batched matrix * batched matrix
        x_data = np.random.random([10, 5, 2]).astype(np.float32)
        y_data = np.random.random([10, 2, 5]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [10, 5, 5]

        # batched matrix * broadcasted matrix
        x_data = np.random.random([10, 1, 5, 2]).astype(np.float32)
        y_data = np.random.random([1, 3, 2, 5]).astype(np.float32)
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
        z = paddle.matmul(x, y)
        print(z.numpy().shape)
        # [10, 3, 5, 5]
143 144

    """
S
ShenLiang 已提交
145 146 147 148 149
    op_type = 'matmul_v2'
    if in_dygraph_mode():
        op = getattr(core.ops, op_type)
        return op(x, y, 'trans_x', transpose_x, 'trans_y', transpose_y)

150
    attrs = {
S
ShenLiang 已提交
151 152
        'trans_x': transpose_x,
        'trans_y': transpose_y,
153 154 155 156 157
    }

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
S
ShenLiang 已提交
158 159
            check_variable_and_dtype(
                val, name, ['float16', 'float32', 'float64'], 'matmul')
160 161 162

    __check_input(x, y)

S
ShenLiang 已提交
163
    helper = LayerHelper('matmul_v2', **locals())
164 165
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
S
ShenLiang 已提交
166
        type='matmul_v2',
167 168 169 170 171
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs=attrs)
    return out
Z
Zhang Ting 已提交
172 173


myq406450149's avatar
myq406450149 已提交
174
def norm(x, p='fro', axis=None, keepdim=False, name=None):
175
    """
S
swtkiwi 已提交
176

177 178 179
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

180 181 182 183 184 185
    .. note::
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

186
    Args:
myq406450149's avatar
myq406450149 已提交
187
        x (Tensor): The input tensor could be N-D tensor, and the input data
188
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
189
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
190
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
191
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
192 193
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
194
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
195
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
myq406450149's avatar
myq406450149 已提交
196
            Defalut value is `None`.
197 198 199 200 201 202 203 204
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
205
        Tensor: results of norm operation on the specified axis of input tensor,
206
        it's data type is the same as input's Tensor.
207

208 209
    Examples:
        .. code-block:: python
210

211
            import paddle
myq406450149's avatar
myq406450149 已提交
212 213 214 215 216 217 218 219
            import numpy as np
            shape=[2, 3, 4]
            np_input = np.arange(24).astype('float32') - 12
            np_input = np_input.reshape(shape)
            x = paddle.to_tensor(np_input)
            #[[[-12. -11. -10.  -9.] [ -8.  -7.  -6.  -5.] [ -4.  -3.  -2.  -1.]]
            # [[  0.   1.   2.   3.] [  4.   5.   6.   7.] [  8.   9.  10.  11.]]]

220
            # compute frobenius norm along last two dimensions.
myq406450149's avatar
myq406450149 已提交
221 222 223
            out_fro = paddle.norm(x, p='fro', axis=[0,1])
            # out_fro.numpy() [17.435596 16.911535 16.7332   16.911535]

224 225
            # compute 2-order vector norm along last dimension.
            out_pnorm = paddle.norm(x, p=2, axis=-1)
myq406450149's avatar
myq406450149 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
            #out_pnorm.numpy(): [[21.118711  13.190906   5.477226]
            #                    [ 3.7416575 11.224972  19.131126]]

            # compute 2-order  norm along [0,1] dimension.
            out_pnorm = paddle.norm(x, p=2, axis=[0,1])
            #out_pnorm.numpy(): [17.435596 16.911535 16.7332   16.911535]

            # compute inf-order  norm
            out_pnorm = paddle.norm(x, p=np.inf)
            #out_pnorm.numpy()  = [12.]
            out_pnorm = paddle.norm(x, p=np.inf, axis=0)
            #out_pnorm.numpy(): [[12. 11. 10. 9.] [8. 7. 6. 7.] [8. 9. 10. 11.]]

            # compute -inf-order  norm
            out_pnorm = paddle.norm(x, p=-np.inf)
            #out_pnorm.numpy(): [0.]
            out_pnorm = paddle.norm(x, p=-np.inf, axis=0)
            #out_pnorm.numpy(): [[0. 1. 2. 3.] [4. 5. 6. 5.] [4. 3. 2. 1.]]
244 245
    """

myq406450149's avatar
myq406450149 已提交
246
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
247 248 249 250 251 252 253 254 255 256 257
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
myq406450149's avatar
myq406450149 已提交
258
        if in_dygraph_mode():
myq406450149's avatar
myq406450149 已提交
259 260 261 262 263 264 265
            if dim is None:
                return core.ops.frobenius_norm(input, 'keep_dim', keepdim,
                                               'reduce_all', True)
            return core.ops.frobenius_norm(input, 'dim', dim, 'keep_dim',
                                           keepdim, 'reduce_all', False)
        attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
        if dim is None:
266 267 268 269 270
            attrs['reduce_all'] = True
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'frobenius_norm')

        helper = LayerHelper('frobenius_norm', **locals())
myq406450149's avatar
myq406450149 已提交
271 272
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
273 274 275 276 277 278 279 280 281 282 283 284

        helper.append_op(
            type='frobenius_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs)
        return out

    def vector_norm(input,
                    porder=None,
                    axis=None,
                    keepdim=False,
myq406450149's avatar
myq406450149 已提交
285
                    asvector=False,
286 287 288 289 290 291 292 293 294
                    name=None):
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
myq406450149's avatar
myq406450149 已提交
295 296 297 298
        if in_dygraph_mode():
            if axis is None: axis = -1
            return core.ops.p_norm(input, 'porder', porder, 'axis', axis,
                                   'keepdim', keepdim, 'asvector', asvector)
299 300 301 302
        if porder is not None:
            check_type(porder, 'porder', (float, int), 'p_norm')
        if axis is not None:
            check_type(axis, 'axis', (int), 'p_norm')
myq406450149's avatar
myq406450149 已提交
303 304 305
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'p_norm')

306 307 308 309
        attrs = {
            'axis': axis if axis is not None else -1,
            'porder': float(porder) if porder is not None else 2.0,
            'keepdim': keepdim,
myq406450149's avatar
myq406450149 已提交
310
            'asvector': asvector,
311 312 313
            'epsilon': 1e-12,
        }
        helper = LayerHelper('p_norm', **locals())
myq406450149's avatar
myq406450149 已提交
314 315
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
316 317 318 319 320 321 322 323

        helper.append_op(
            type='p_norm',
            inputs={'X': input},
            outputs={'Out': out},
            attrs=attrs)
        return out

myq406450149's avatar
myq406450149 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    def inf_norm(input,
                 porder=None,
                 axis=axis,
                 keepdim=False,
                 asvector=False,
                 name=None):
        helper = LayerHelper('frobenius_norm', **locals())
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
        helper.append_op(type='abs', inputs={'X': input}, outputs={'Out': out})
        reduce_out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

        reduce_all = True if axis == None or axis == [] or asvector == True else False
        axis = axis if axis != None and axis != [] else [0]

        reduce_type = 'reduce_max' if porder == np.float(
            'inf') else 'reduce_min'
        helper.append_op(
            type=reduce_type,
            inputs={'X': out},
            outputs={'Out': reduce_out},
            attrs={'dim': axis,
                   'keep_dim': keepdim,
                   'reduce_all': reduce_all})

        return reduce_out

    def p_matrix_norm(input, porder=1., axis=axis, keepdim=False, name=None):
353 354 355 356
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
myq406450149's avatar
myq406450149 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        abs_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out})
        pow_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())

        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder})
        sum_out = block.create_variable_for_type_inference(
            dtype=block.input_dtype())
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False
            })
        porder
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1. / porder)})
        return out

391 392 393
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
394
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
395 396 397 398 399
            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
            return vector_norm(
myq406450149's avatar
myq406450149 已提交
400 401 402 403 404 405
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name)
406 407 408 409
        else:
            raise ValueError("only valid p type is string or float, found {}".
                             format(type(p)))

myq406450149's avatar
myq406450149 已提交
410 411
    if isinstance(axis, tuple):
        axis = list(axis)
412 413 414 415 416
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

    #calculate vector norm, where axis is int or list with only one integer
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430
        if isinstance(p, str):
            if p == "fro":
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name)

            else:
                raise ValueError(
                    "only valid string values are 'fro', found {}".format(p))
        elif isinstance(p, (int, float)):
431
            return vector_norm(
myq406450149's avatar
myq406450149 已提交
432 433 434 435 436 437
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name)
438 439 440 441 442 443 444
        else:
            raise ValueError(
                "unspport p for p-order vector norm. except float, found {}".
                format(p))
    #calculate matrix norm, where axis is list with two integers
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
445 446 447
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
448 449 450 451
        elif p == 0:
            raise ValueError(
                "just suport axis type int or list (length of list <=1) if p = 0, found {}".
                format(axis))
452
        else:
myq406450149's avatar
myq406450149 已提交
453 454
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name)
455 456 457 458 459 460
    else:
        raise ValueError(
            "except axis type int or list (length of list <=2), found {}".
            format(axis))


Z
Zhang Ting 已提交
461
def dist(x, y, p=2):
462
    r"""
S
swtkiwi 已提交
463

Z
Zhang Ting 已提交
464
    This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
465 466
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
    details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Z
Zhang Ting 已提交
467

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

    When p = inf, the inf-norm of z is the maximum element of z.

    .. math::

        ||z||_\infty=\max_i |z_i|

    When p = -inf, the negative-inf-norm of z is the minimum element of z.

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
517 518
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
519 520 521
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.

    Returns:
522
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
523 524 525 526 527 528 529

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

530 531 532 533
            x = paddle.to_tensor(np.array([[3, 3],[3, 3]]), "float32")
            y = paddle.to_tensor(np.array([[3, 3],[3, 1]]), "float32")
            out = paddle.dist(x, y, 0)
            print(out) # out = [1.]
Z
Zhang Ting 已提交
534

535 536
            out = paddle.dist(x, y, 2)
            print(out) # out = [2.]
Z
Zhang Ting 已提交
537

538 539
            out = paddle.dist(x, y, float("inf"))
            print(out) # out = [2.]
Z
Zhang Ting 已提交
540

541 542
            out = paddle.dist(x, y, float("-inf"))
            print(out) # out = [0.]
Z
Zhang Ting 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555
    """
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs)
    return out
L
liuwei1031 已提交
556 557 558 559 560


def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
561

L
liuwei1031 已提交
562
    .. note::
563 564
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
565 566

    Parameters:
S
ShenLiang 已提交
567 568
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
569 570
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

571
    Returns:
572
        Tensor: the calculated result Tensor.
573

L
liuwei1031 已提交
574 575 576 577 578 579
    Examples:

    .. code-block:: python

        import paddle
        import numpy as np
580 581 582

        x_data = np.random.uniform(0.1, 1, [10]).astype(np.float32)
        y_data = np.random.uniform(1, 3, [10]).astype(np.float32)
S
ShenLiang 已提交
583 584
        x = paddle.to_tensor(x_data)
        y = paddle.to_tensor(y_data)
585
        z = paddle.dot(x, y)
586
        print(z)
L
liuwei1031 已提交
587 588 589

    """
    op_type = 'dot'
590 591 592 593 594
    # skip var type check in dygraph mode to improve efficiency
    if in_dygraph_mode():
        op = getattr(core.ops, op_type)
        return op(x, y)

L
liuwei1031 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             op_type)
    check_variable_and_dtype(y, 'y', ['float32', 'float64', 'int32', 'int64'],
                             op_type)

    helper = LayerHelper(op_type, **locals())
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
    helper.append_op(
        type="dot", inputs={'X': x,
                            'Y': y}, attrs={}, outputs={"Out": out})
    return out
613 614 615 616


def t(input, name=None):
    """
617 618
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
619
    the paddle.transpose function which perm dimensions set 0 and 1.
620

621
    Args:
622
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float16, float32, float64, int32.
623
        name(str, optional): The default value is None.  Normally there is no need for
624 625
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
626
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
627

628
    For Example:
629

630
        .. code-block:: text
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646

             # Example 1 (0-D tensor)
             x = tensor([0.79])
             paddle.t(x) = tensor([0.79])

             # Example 2 (1-D tensor)
             x = tensor([0.79, 0.84, 0.32])
             paddle.t(x) = tensor([0.79, 0.84, 0.32])

             # Example 3 (2-D tensor)
             x = tensor([0.79, 0.84, 0.32],
                        [0.64, 0.14, 0.57])
             paddle.t(x) = tensor([0.79, 0.64],
                                  [0.84, 0.14],
                                  [0.32, 0.57])

647
     Examples:
648

649
        .. code-block:: python
650

651
            import paddle
652
            x = paddle.ones(shape=[2, 3], dtype='int32')
653
            x_transposed = paddle.t(x)
654 655
            print(x_transposed.shape)
            # [3, 2]
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
            "tensor.transpose() instead." % len(input.shape))
    if in_dygraph_mode():
        if len(input.shape) == 1:
            return input
        # 2-D tensor
        perm = [1, 0]
        out, _ = core.ops.transpose2(input, 'axis', perm)
        return out

    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64', 'int32', 'int64'],
        'transpose')

    helper = LayerHelper('t', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    input_shape = helper.create_variable_for_type_inference(input.dtype)
    if len(input.shape) == 1:
        out = input
    else:
        helper.append_op(
            type='transpose2',
            inputs={'X': [input]},
            outputs={'Out': [out],
                     'XShape': [input_shape]},
            attrs={'axis': [1, 0]})
    return out
687 688


689
def cross(x, y, axis=None, name=None):
690
    """
691
    Computes the cross product between two tensors along an axis.
692

693 694
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
695

696
    Args:
697 698
        x (Tensor): The first input tensor.
        y (Tensor): The second input tensor.
699
        axis (int, optional): The axis along which to compute the cross product. It defaults to the first axis found with the length 3.
700
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
701 702

    Returns:
703
        Tensor. A Tensor with same data type as `x`.
704

705 706
    Examples:
        .. code-block:: python
707

708
            import paddle
709

Z
Zhou Wei 已提交
710 711 712 713 714 715
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
716

717 718 719 720 721 722 723 724 725
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
726 727
    """
    if in_dygraph_mode():
728
        if axis is not None:
729
            return core.ops.cross(x, y, 'dim', axis)
730
        else:
731
            return core.ops.cross(x, y)
732

733 734
    helper = LayerHelper("cross", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
735
    attrs = dict()
736
    attrs['dim'] = axis
737 738 739

    helper.append_op(
        type='cross',
740 741
        inputs={'X': x,
                'Y': y},
742 743 744
        outputs={'Out': out},
        attrs=attrs)
    return out
745 746


747
def cholesky(x, upper=False, name=None):
748
    r"""
G
Guo Sheng 已提交
749
    Computes the Cholesky decomposition of one symmetric positive-definite
750 751
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
752 753 754 755 756 757
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
758
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
759 760 761 762 763 764 765
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.

    Returns:
766
        Tensor: A Tensor with same shape and data type as `x`. It represents \
G
Guo Sheng 已提交
767
            triangular matrices generated by Cholesky decomposition.
768

G
Guo Sheng 已提交
769 770 771 772 773 774
    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

775 776 777
            a = np.random.rand(3, 3)
            a_t = np.transpose(a, [1, 0])
            x_data = np.matmul(a, a_t) + 1e-03
778
            x = paddle.to_tensor(x_data)
779
            out = paddle.cholesky(x, upper=False)
780
            print(out)
781 782 783
            # [[1.190523   0.         0.        ]
            #  [0.9906703  0.27676893 0.        ]
            #  [1.25450498 0.05600871 0.06400121]]
G
Guo Sheng 已提交
784 785

    """
786 787
    if in_dygraph_mode():
        return core.ops.cholesky(x, "upper", upper)
G
Guo Sheng 已提交
788 789 790 791 792 793 794 795 796 797 798 799
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
    check_type(upper, 'upper', bool, 'cholesky')
    helper = LayerHelper('cholesky', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='cholesky',
        inputs={'X': [x]},
        outputs={'Out': out},
        attrs={'upper': upper})
    return out


800 801 802 803 804 805 806 807 808
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
809 810
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
811 812 813 814
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
815
        Tensor: The product Tensor.
816 817 818

    Examples:
        import paddle
Y
yaoxuefeng 已提交
819

820 821 822 823 824 825 826 827
        # In imperative mode:
        # size x: (2, 2, 3) and y: (2, 3, 2)
        x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                               [2.0, 2.0, 2.0]],
                              [[3.0, 3.0, 3.0],
                               [4.0, 4.0, 4.0]]])
        y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                              [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
Y
yaoxuefeng 已提交
828 829 830 831 832
        out = paddle.bmm(x, y)
        #output size: (2, 2, 2)
        #output value:
        #[[[6.0, 6.0],[12.0, 12.0]],[[45.0, 45.0],[60.0, 60.0]]]
        out_np = out.numpy()
833
    """
Y
yaoxuefeng 已提交
834 835 836 837 838 839 840 841 842 843
    x_shape = x.shape
    y_shape = y.shape
    if not len(x_shape) == len(y_shape) == 3:
        raise ValueError(
            "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".
            format(x_shape, y_shape))
    if x_shape[2] != y_shape[1]:
        raise ValueError(
            "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".
            format(x_shape, y_shape))
844 845 846 847
    if x_shape[0] != y_shape[0]:
        raise ValueError(
            "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".
            format(x_shape, y_shape))
848 849 850 851 852 853
    helper = LayerHelper('bmm', **locals())
    if in_dygraph_mode():
        return core.ops.bmm(x, y)
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
Q
Qi Li 已提交
854 855 856 857


def histogram(input, bins=100, min=0, max=0):
    """
858
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
859 860 861
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
862
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
863 864 865 866 867 868
            should be float32, float64, int32, int64.
        bins (int): number of histogram bins
        min (int): lower end of the range (inclusive)
        max (int): upper end of the range (inclusive)

    Returns:
869
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
870

871
    Examples:
Q
Qi Li 已提交
872
        .. code-block:: python
873

Q
Qi Li 已提交
874
            import paddle
875

876
            inputs = paddle.to_tensor([1, 2, 1])
877 878
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
    """
    if in_dygraph_mode():
        return core.ops.histogram(input, "bins", bins, "min", min, "max", max)

    helper = LayerHelper('histogram', **locals())
    check_variable_and_dtype(
        input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram')
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
    helper.append_op(
        type='histogram',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'bins': bins,
               'min': min,
               'max': max})
    return out
895 896 897 898 899 900 901


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
902
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
903
            should be one of float32, float64.
F
furnace 已提交
904
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import numpy as np
            import paddle

            x_data = np.array([[2, 1, 3], [3, 0, 1]]).astype("float64")
            x = paddle.to_tensor(x_data)
            vec_data = np.array([3, 5, 1])
            vec = paddle.to_tensor(vec_data).astype("float64")
            out = paddle.mv(x, vec)
    """
    if in_dygraph_mode():
        out = core.ops.mv(x, vec)
        return out

    def __check_input(x, vec):
        var_names = {'x': x, 'vec': vec}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name, ['float32', 'float64'], 'mv')
        x_shape = list(x.shape)
        vec_shape = list(vec.shape)
        if len(x_shape) != 2:
            raise ValueError(
                "x should be 2-dimensional. But received x's dimention: {}".
                format(x_shape))
        if len(vec_shape) != 1:
            raise ValueError(
                "vec should be 1-dimensional. But received vec's dimention: {}".
                format(vec_shape))

    __check_input(x, vec)

    helper = LayerHelper('mv', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='mv', inputs={'X': x,
                           'Vec': vec}, outputs={'Out': out})
    return out