Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
f5d76b50
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f5d76b50
编写于
4月 21, 2020
作者:
Z
Zhang Ting
提交者:
GitHub
4月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
polish the dist doc, test=document_fix (#23982)
上级
62e647c3
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
25 addition
and
2 deletion
+25
-2
python/paddle/tensor/linalg.py
python/paddle/tensor/linalg.py
+25
-2
未找到文件。
python/paddle/tensor/linalg.py
浏览文件 @
f5d76b50
...
...
@@ -341,9 +341,32 @@ def norm(input, p='fro', axis=None, keepdim=False, out=None, name=None):
def
dist
(
x
,
y
,
p
=
2
):
"""
This OP returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
of distance. The shapes of x and y must be broadcastable.
of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
details, please refer to the `numpy's broadcasting <https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html>`_:
Where, z = x - y,
- Each input has at least one dimension.
- Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.
Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
obtained as follows:
1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
tensor with fewer dimensions.
For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
dimension of y.
x (4-D Tensor): 8 x 1 x 6 x 1
y (4-D Tensor): 1 x 7 x 1 x 5
2. Determine the size of each dimension of the output z: choose the maximum value from the
two input dimensions.
z (4-D Tensor): 8 x 7 x 6 x 5
If the number of dimensions of the two inputs are the same, the size of the output can be
directly determined in step 2. When p takes different values, the norm formula is as follows:
When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录