dropout_op.cc 4.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
X
Xinghai Sun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
X
Xinghai Sun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
X
Xinghai Sun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
X
Xinghai Sun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/dropout_op.h"
X
Xinghai Sun 已提交
16 17 18 19 20 21 22 23 24 25

namespace paddle {
namespace operators {

using framework::Tensor;

class DropoutOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
27 28 29 30
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");

    auto x_dims = ctx->GetInputDim("X");
    ctx->SetOutputDim("Out", x_dims);
31
    if (ctx->Attrs().Get<bool>("is_test") == false) {
Q
Qiao Longfei 已提交
32
      ctx->SetOutputDim("Mask", x_dims);
33
    }
Q
Qiao Longfei 已提交
34
    ctx->ShareLoD("X", /*->*/ "Out");
X
Xinghai Sun 已提交
35 36 37 38 39
  }
};

class DropoutOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
40
  void Make() override {
X
Xinghai Sun 已提交
41 42
    AddInput("X", "The input of dropout op.");
    AddOutput("Out", "The output of dropout op.");
43
    AddOutput("Mask", "The random sampled dropout mask.").AsIntermediate();
X
Xinghai Sun 已提交
44

K
Kexin Zhao 已提交
45
    AddAttr<float>("dropout_prob", "Probability of setting units to zero.")
C
chengduoZH 已提交
46 47
        .SetDefault(.5f)
        .AddCustomChecker([](const float& drop_p) {
C
refine  
chengduoZH 已提交
48 49
          PADDLE_ENFORCE(drop_p >= 0.0f && drop_p <= 1.0f,
                         "'dropout_prob' must be between 0.0 and 1.0.");
C
chengduoZH 已提交
50
        });
51
    AddAttr<bool>("is_test", "True if in test phase.").SetDefault(false);
52 53 54 55 56 57 58
    AddAttr<bool>("fix_seed",
                  "A flag indicating whether to use a fixed seed to generate "
                  "random mask. NOTE: DO NOT set this flag to true in "
                  "training. Setting this flag to true is only useful in "
                  "unittest or for debug that always the same output units "
                  "will be dropped.")
        .SetDefault(false);
K
Kexin Zhao 已提交
59 60
    AddAttr<int>("seed", "Dropout random seed.").SetDefault(0);

61 62 63
    AddComment(R"DOC(
Dropout Operator.

K
Kexin Zhao 已提交
64
Dropout refers to randomly dropping out units in a nerual network. It is a
65 66
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
67
the given dropout probability) the outputs of some units to zero, while others
K
Kexin Zhao 已提交
68 69
are set equal to their corresponding inputs.

70
)DOC");
X
Xinghai Sun 已提交
71 72 73 74 75 76 77
  }
};

class DropoutOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

78
  void InferShape(framework::InferShapeContext* ctx) const override {
79 80
    PADDLE_ENFORCE_EQ(ctx->Attrs().Get<bool>("is_test"), false,
                      "GradOp is only callable when is_test is false");
Q
Qiao Longfei 已提交
81 82 83 84 85 86 87 88

    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Mask"), "Mask must not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) must not be null.");

    auto x_dims = ctx->GetInputDim("X");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
X
Xinghai Sun 已提交
89
    PADDLE_ENFORCE_EQ(x_dims, out_dims,
X
Xinghai Sun 已提交
90
                      "Dimensions of Input(X) and Out@Grad must be the same.");
Q
Qiao Longfei 已提交
91
    auto mask_dims = ctx->GetInputDim("Mask");
X
Xinghai Sun 已提交
92 93
    PADDLE_ENFORCE_EQ(x_dims, mask_dims,
                      "Dimensions of Input(X) and Mask must be the same.");
94

Q
Qiao Longfei 已提交
95
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
X
Xinghai Sun 已提交
96 97 98 99 100 101 102
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
103
REGISTER_OPERATOR(dropout, ops::DropoutOp, ops::DropoutOpMaker,
104 105
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(dropout_grad, ops::DropoutOpGrad);
106
REGISTER_OP_CPU_KERNEL(
K
Kexin Zhao 已提交
107
    dropout, ops::CPUDropoutKernel<paddle::platform::CPUDeviceContext, float>);
X
Xinghai Sun 已提交
108
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
109 110
    dropout_grad,
    ops::DropoutGradKernel<paddle::platform::CPUDeviceContext, float>);