op_converter.h 12.5 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
L
Luo Tao 已提交
21
#include "paddle/fluid/framework/block_desc.h"
22
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
23
#include "paddle/fluid/framework/scope.h"
24
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
25
#include "paddle/fluid/inference/tensorrt/engine.h"
26
#include "paddle/fluid/inference/tensorrt/helper.h"
L
Luo Tao 已提交
27
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
39

40 41
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
42 43
                          const framework::Scope& scope,
                          bool test_mode = false) {}
44

45 46
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
47 48
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
49 50
                 const framework::Scope& scope, TensorRTEngine* engine,
                 bool test_mode = false) {
Y
Yan Chunwei 已提交
51
    framework::OpDesc op_desc(op, nullptr);
52 53

    OpConverter* it{nullptr};
L
Luo Tao 已提交
54

55
    if (op_desc.Type() == "mul") {
S
Shang Zhizhou 已提交
56 57 58 59 60 61
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL,
                        platform::errors::InvalidArgument(
                            "The input op mul's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
62 63
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
64
        it = Registry<OpConverter>::Global().Lookup("fc");
65 66
      }
    }
N
nhzlx 已提交
67 68 69 70 71 72
    if (op_desc.Type().find("elementwise") != std::string::npos) {
      static std::unordered_set<std::string> add_tensor_op_set{
          "add", "mul", "sub", "div", "max", "min", "pow"};
      // TODO(xingzhaolong): all mul, sub, div
      // static std::unordered_set<std::string> add_weight_op_set {"add", "mul",
      // "sub", "div"};
73
      static std::unordered_set<std::string> add_weight_op_set{"add", "mul"};
S
Shang Zhizhou 已提交
74 75 76 77 78 79
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL,
                        platform::errors::InvalidArgument(
                            "The input op's Input(\"Y\")."
                            "size() should equal to 1, but reveceid "
                            "Input(\"Y\").size() = %u.",
                            op_desc.Input("Y").size()));
N
nhzlx 已提交
80 81 82 83
      int op_type_len = op_desc.Type().size();
      std::string op_type = op_desc.Type().substr(op_type_len - 3, op_type_len);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
S
Shang Zhizhou 已提交
84 85 86 87
        PADDLE_ENFORCE_GT(
            add_weight_op_set.count(op_type), 0,
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
88 89
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_weight");
S
Shang Zhizhou 已提交
90 91 92
        PADDLE_ENFORCE_NOT_NULL(
            it, platform::errors::Unimplemented(
                    "no OpConverter for optype [%s]", op_desc.Type()));
N
nhzlx 已提交
93
      } else {
S
Shang Zhizhou 已提交
94 95 96 97
        PADDLE_ENFORCE_GT(
            add_tensor_op_set.count(op_type), 0,
            platform::errors::Unimplemented("Unsupported elementwise type %s",
                                            op_type.c_str()));
98 99
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_tensor");
N
nhzlx 已提交
100
      }
S
Shang Zhizhou 已提交
101 102 103
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
N
nhzlx 已提交
104 105 106
    }

    if (op_desc.Type() == "depthwise_conv2d") {
107
      it = Registry<OpConverter>::Global().Lookup("conv2d");
S
Shang Zhizhou 已提交
108 109 110
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
N
nhzlx 已提交
111
    }
112 113 114 115 116 117 118 119 120 121 122 123
    if (op_desc.Type() == "transpose2") {
      it = Registry<OpConverter>::Global().Lookup("transpose");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
    if (op_desc.Type() == "flatten2") {
      it = Registry<OpConverter>::Global().Lookup("flatten");
      PADDLE_ENFORCE_NOT_NULL(
          it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                              op_desc.Type()));
    }
124
    if (!it) {
125
      it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
126
    }
S
Shang Zhizhou 已提交
127 128 129
    PADDLE_ENFORCE_NOT_NULL(
        it, platform::errors::Unimplemented("no OpConverter for optype [%s]",
                                            op_desc.Type()));
130

131
    it->SetEngine(engine);
132
    (*it)(op, scope, test_mode);
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    bool has_out_scale = op_desc.HasAttr("out_threshold");
    if (has_out_scale) {
      float out_scale =
          BOOST_GET_CONST(float, op_desc.GetAttr("out_threshold"));
      std::string output_name = "";
      if (op_desc.HasOutput("Output")) {
        output_name = op_desc.Output("Output").front();
      } else if (op_desc.HasOutput("Out")) {
        output_name = op_desc.Output("Out").front();
      } else if (op_desc.HasOutput("Y")) {
        output_name = op_desc.Output("Y").front();
      } else {
        PADDLE_THROW(
            platform::errors::NotFound("Op %s has out threshold but doesn't "
                                       "have an output named \"Output\", "
                                       "\"Out\" or \"Y\".",
                                       op_desc.Type()));
      }
      auto* output_itensor = engine->GetITensor(output_name);
      engine->SetTensorDynamicRange(output_itensor, out_scale);
      VLOG(1) << "Set out scale = " << out_scale << " for tensor "
              << output_name << ".";
    }
L
Luo Tao 已提交
157 158
  }

Y
Yan Chunwei 已提交
159 160
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
161
  void ConvertBlock(const framework::proto::BlockDesc& block,
162 163
                    const std::unordered_set<std::string>& parameters,
                    const framework::Scope& scope, TensorRTEngine* engine) {
N
nhzlx 已提交
164
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
165
    for (int i = 0; i < block.ops_size(); i++) {
166
      const auto& op = block.ops(i);
167
      ConvertOp(op, parameters, scope, engine);
L
Luo Tao 已提交
168 169 170
    }
  }

N
nhzlx 已提交
171
  // The scope  here should be inited with the parameter vars.
172 173 174 175 176 177
  void ConvertBlockToTRTEngine(
      framework::BlockDesc* block_desc, const framework::Scope& scope,
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
      const std::vector<std::string>& outputs, TensorRTEngine* engine) {
    engine->InitNetwork();
178
    bool all_dynamic_shape_set = true;
179 180 181
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
S
Shang Zhizhou 已提交
182 183 184 185 186 187 188
      PADDLE_ENFORCE_NOT_NULL(
          var, platform::errors::NotFound("no variable called %s in block.",
                                          input.c_str()));
      PADDLE_ENFORCE_EQ(
          var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
          platform::errors::InvalidArgument("TensorRT engine only takes "
                                            "LoDTensor as input"));
N
nhzlx 已提交
189
      auto var_shape = var->GetShape();
190 191 192 193 194 195
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
196 197 198 199 200 201 202
        if (ranks == 0) {
          all_dynamic_shape_set = false;
          LOG(INFO) << "trt input [" << input.c_str()
                    << "] dynamic shape info not set, please check and retry.";
          // check other input
          continue;
        }
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
        std::vector<int64_t> input_shape;
        input_shape.push_back(-1);
        for (size_t i = 1; i < ranks; i++) {
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
            PADDLE_ENFORCE_EQ(min_input_shape[i], optim_input_shape[i],
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
            input, FluidDataType2TRT(
                       var->Proto()->type().lod_tensor().tensor().data_type()),
            Vec2TRT_Dims(input_shape, input, true));
#endif
      } else {
        engine->DeclareInput(
            input, FluidDataType2TRT(
                       var->Proto()->type().lod_tensor().tensor().data_type()),
            Vec2TRT_Dims(var_shape, input));
      }
228
    }
229 230 231 232
    PADDLE_ENFORCE_EQ(all_dynamic_shape_set, true,
                      platform::errors::InvalidArgument(
                          "some trt inputs dynamic shape info not set, "
                          "check the INFO log above for more details."));
233 234 235 236 237 238
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
    for (auto& output : outputs) {
      engine->DeclareOutput(output);
    }
    engine->FreezeNetwork();
239
    engine->ClearWeights();
240 241
  }

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
  void RreplenishLayerAndOutput(
      nvinfer1::ILayer* layer, const std::string& layer_type,
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
    size_t num_out = output_tensor_names.size();
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
    }
    layer->setName(
        (layer_type + " (Output: " + output_tensor_names[0] + ")").c_str());
  }
L
Luo Tao 已提交
257 258
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

L
Luo Tao 已提交
259 260
  virtual ~OpConverter() {}

L
Luo Tao 已提交
261 262 263
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};

264 265 266
 protected:
  bool test_mode_;

L
Luo Tao 已提交
267 268 269 270 271
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
272
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
273
  std::mutex mut_;
L
Luo Tao 已提交
274 275
};

276 277 278 279
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

280 281 282
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
283 284 285
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
286 287 288 289 290 291 292 293
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

294 295 296
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
297
      TouchConverterRegister_##op_type__();