learning_rate_scheduler.py 11.9 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24
from __future__ import print_function

25 26 27 28
from . import control_flow
from . import nn
from . import ops
from . import tensor
29
from ..initializer import init_on_cpu
30
from ..framework import default_main_program, Parameter, unique_name
Q
Qiao Longfei 已提交
31

32 33
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
W
Wu Yi 已提交
34
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'append_LARS'
35
]
Q
Qiao Longfei 已提交
36 37


38
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
39
    # the first global step is zero in learning rate decay
40
    global_step = nn.autoincreased_step_counter(
41
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
42
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
43 44 45
    return global_step


46
def noam_decay(d_model, warmup_steps):
Y
yuyang18 已提交
47 48 49 50 51 52 53 54 55 56
    """
    Noam decay method. The numpy implementation of noam decay as follows.

    >>> import numpy as np
    >>> lr_value = np.power(d_model, -0.5) * np.min([
    >>>                         np.power(current_steps, -0.5),
    >>>                         np.power(warmup_steps, -1.5) * current_steps])

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
57 58 59

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
60

61 62 63 64 65
        warmup_steps(Variable): A super parameter.

    Returns:
        The decayed learning rate.
    """
66 67
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter(1)
F
fengjiayi 已提交
68

69 70
        a = global_step**-0.5
        b = (warmup_steps**-1.5) * global_step
S
sneaxiy 已提交
71
        lr_value = (d_model**-0.5) * nn.elementwise_min(a, b)
72 73 74 75

    return lr_value


Y
Yu Yang 已提交
76
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
77
    """
78
    Applies exponential decay to the learning rate.
F
fengjiayi 已提交
79

80 81
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, the learning rate will be decayed by
F
fengjiayi 已提交
82 83 84 85 86 87
    'decay_rate' every 'decay_steps' steps.

    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
88 89

    Args:
F
fengjiayi 已提交
90 91 92 93 94
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
95 96

    Returns:
F
fengjiayi 已提交
97
        Variable: The decayed learning rate
F
fengjiayi 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)

Q
Qiao Longfei 已提交
111
    """
112 113
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
114

115 116 117 118
        div_res = global_step / decay_steps
        if staircase:
            div_res = ops.floor(div_res)
        decayed_lr = learning_rate * (decay_rate**div_res)
119

120
        return decayed_lr
Q
Qiao Longfei 已提交
121 122


Y
Yu Yang 已提交
123
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
124 125
    """Applies natural exponential decay to the initial learning rate.

Y
Yu Yang 已提交
126 127 128 129 130
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))

Q
Qiao Longfei 已提交
131 132 133 134 135 136 137 138 139 140
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
141 142
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
143

144 145 146 147
        div_res = global_step / decay_steps
        if staircase:
            div_res = ops.floor(div_res)
        decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
148

149
        return decayed_lr
Q
Qiao Longfei 已提交
150 151


Y
Yu Yang 已提交
152
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
153 154
    """
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
155

156 157
    When training a model, it is often recommended to lower the learning rate as the
    training progresses. By using this function, an inverse decay function will be
F
fengjiayi 已提交
158
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
159

F
fengjiayi 已提交
160
    >>> if staircase == True:
Y
Yu Yang 已提交
161 162 163 164
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
165
    Args:
F
fengjiayi 已提交
166 167 168 169 170
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
171 172

    Returns:
F
fengjiayi 已提交
173
        Variable: The decayed learning rate
F
fengjiayi 已提交
174 175 176 177 178 179 180 181 182 183 184 185

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.inverse_time_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)
Q
Qiao Longfei 已提交
186
    """
187 188
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
189

190 191 192
        div_res = global_step / decay_steps
        if staircase:
            div_res = ops.floor(div_res)
193

194
        decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
195

196
        return decayed_lr
197 198 199 200 201 202 203


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
204 205 206
    """
    Applies polynomial decay to the initial learning rate.

Q
qiaolongfei 已提交
207
    .. code-block:: python
Q
qiaolongfei 已提交
208 209 210 211 212 213 214

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
215 216

    Args:
Q
qiaolongfei 已提交
217
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
218
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
219
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
220 221 222
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
223 224

    Returns:
Q
update  
qiaolongfei 已提交
225
        Variable: The decayed learning rate
226
    """
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    with default_main_program()._lr_schedule_guard():
        global_step = _decay_step_counter()

        if cycle:
            div_res = ops.ceil(global_step / decay_steps)
            zero_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=0.0)
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)

            with control_flow.Switch() as switch:
                with switch.case(global_step == zero_var):
                    tensor.assign(input=one_var, output=div_res)
            decay_steps = decay_steps * div_res
        else:
            decay_steps_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=float(decay_steps))
S
sneaxiy 已提交
244
            global_step = nn.elementwise_min(x=global_step, y=decay_steps_var)
F
fengjiayi 已提交
245

246 247 248
        decayed_lr = (learning_rate - end_learning_rate) * \
            ((1 - global_step / decay_steps) ** power) + end_learning_rate
        return decayed_lr
249 250


Y
Yu Yang 已提交
251
def piecewise_decay(boundaries, values):
252 253
    """Applies piecewise decay to the initial learning rate.

X
Xin Pan 已提交
254 255 256 257 258 259 260 261 262 263 264 265
      The algorithm can be described as the code below.

      .. code-block:: python

        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if step < 10000:
            learning_rate = 1.0
        elif 10000 <= step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1
X
Xin Pan 已提交
266 267 268 269 270 271 272 273
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
Xin Pan 已提交
274

275
    """
276 277 278
    with default_main_program()._lr_schedule_guard():
        if len(values) - len(boundaries) != 1:
            raise ValueError("len(values) - len(boundaries) should be 1")
279

280
        global_step = _decay_step_counter()
281

282 283 284 285 286 287
        lr = tensor.create_global_var(
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate")
288

289 290 291 292 293 294 295 296 297 298 299 300
        with control_flow.Switch() as switch:
            for i in range(len(boundaries)):
                boundary_val = tensor.fill_constant(
                    shape=[1],
                    dtype='float32',
                    value=float(boundaries[i]),
                    force_cpu=True)
                value_var = tensor.fill_constant(
                    shape=[1], dtype='float32', value=float(values[i]))
                with switch.case(global_step < boundary_val):
                    tensor.assign(value_var, lr)
            last_value_var = tensor.fill_constant(
301 302
                shape=[1],
                dtype='float32',
303 304 305
                value=float(values[len(values) - 1]))
            with switch.default():
                tensor.assign(last_value_var, lr)
306 307

    return lr
W
Wu Yi 已提交
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339


def append_LARS(params_grads, learning_rate, weight_decay):
    """Applies LARS (LAYER-WISE ADAPTIVE RATE SCALING) to learning rate for
       each layer.

    ```python
        learning_rate *= local_gw_ratio * sqrt(sumsq(param))
                        / (sqrt(sumsq(gradient))+ weight_decay * sqrt(sumsq(param)))
    ```

    Args:
        learning_rate: A learning rate Variable. This
          is the global learning rate for LARS.
        weight_decay: A Python `float` number.

    Returns:
        The decayed learning rate
    """

    def _balanced_weight(param_norm, grad_norm):
        if weight_decay == 1.0:
            return grad_norm + param_norm
        else:
            return grad_norm + weight_decay * param_norm

    for param, grad in params_grads:
        param_lr = param.optimize_attr['learning_rate']
        param_norm = ops.sqrt(nn.reduce_sum(input=ops.square(param)))
        grad_norm = ops.sqrt(nn.reduce_sum(input=ops.square(grad)))
        if type(param_lr) == float and param_lr == 1.0:
            decayed_lr = learning_rate * param_norm \
340
                / _balanced_weight(param_norm, grad_norm)
W
Wu Yi 已提交
341 342
        else:
            decayed_lr = learning_rate * param_lr * param_norm \
343
                / _balanced_weight(param_norm, grad_norm)
W
Wu Yi 已提交
344 345
        # set back param local learning rate
        param.optimize_attr['learning_rate'] = decayed_lr