learning_rate_scheduler.py 11.5 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
yuyang18 已提交
14 15 16 17 18 19 20 21
"""
When training a model, it's often useful to decay the
learning rate during training process, this is called
learning_rate_decay. There are many strategies to do
this, this module will provide some classical method.
User can also implement their own learning_rate_decay
strategy according to this module.
"""
Q
Qiao Longfei 已提交
22

23 24 25 26 27
import control_flow
import nn
import ops
import tensor
from ..initializer import init_on_cpu
W
Wu Yi 已提交
28
from ..framework import default_main_program, Parameter
Q
Qiao Longfei 已提交
29

30 31
__all__ = [
    'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
W
Wu Yi 已提交
32
    'polynomial_decay', 'piecewise_decay', 'noam_decay', 'append_LARS'
33
]
Q
Qiao Longfei 已提交
34 35


36
def _decay_step_counter(begin=0):
Y
Yu Yang 已提交
37
    # the first global step is zero in learning rate decay
38
    global_step = nn.autoincreased_step_counter(
39
        counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
40
    global_step = tensor.cast(global_step, 'float32')
Y
Yu Yang 已提交
41 42 43
    return global_step


44
def noam_decay(d_model, warmup_steps):
Y
yuyang18 已提交
45 46 47 48 49 50 51 52 53 54
    """
    Noam decay method. The numpy implementation of noam decay as follows.

    >>> import numpy as np
    >>> lr_value = np.power(d_model, -0.5) * np.min([
    >>>                         np.power(current_steps, -0.5),
    >>>                         np.power(warmup_steps, -1.5) * current_steps])

    Please reference `attention is all you need
    <https://arxiv.org/pdf/1706.03762.pdf>`_.
55 56 57

    Args:
        d_model(Variable): The dimensionality of input and output of model.
Y
yuyang18 已提交
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72
        warmup_steps(Variable): A super parameter.

    Returns:
        The decayed learning rate.
    """
    global_step = _decay_step_counter(1)
    with init_on_cpu():
        a = global_step**-0.5
        b = (warmup_steps**-1.5) * global_step
        lr_value = (d_model**-0.5) * ops.elementwise_min(a, b)

    return lr_value


Y
Yu Yang 已提交
73
def exponential_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
74 75 76 77 78 79 80 81 82 83 84
    """
    Applies exponential decay to the learning rate. 

    When training a model, it is often recommended to lower the learning rate as the 
    training progresses. By using this function, the learning rate will be decayed by 
    'decay_rate' every 'decay_steps' steps.

    >>> if staircase == True:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ floor(global_step / decay_steps)
    >>> else:
    >>>     decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
Q
Qiao Longfei 已提交
85 86

    Args:
F
fengjiayi 已提交
87 88 89 90 91
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
92 93

    Returns:
F
fengjiayi 已提交
94
        Variable: The decayed learning rate
F
fengjiayi 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.exponential_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)

Q
Qiao Longfei 已提交
108
    """
Y
Yu Yang 已提交
109
    global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
110

111 112 113 114
    with init_on_cpu():
        # update learning_rate
        div_res = global_step / decay_steps
        if staircase:
115
            div_res = ops.floor(div_res)
116 117 118
        decayed_lr = learning_rate * (decay_rate**div_res)

    return decayed_lr
Q
Qiao Longfei 已提交
119 120


Y
Yu Yang 已提交
121
def natural_exp_decay(learning_rate, decay_steps, decay_rate, staircase=False):
Q
Qiao Longfei 已提交
122 123
    """Applies natural exponential decay to the initial learning rate.

Y
Yu Yang 已提交
124 125 126 127 128
    >>> if not staircase:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))
    >>> else:
    >>>     decayed_learning_rate = learning_rate * exp(- decay_rate * (global_step / decay_steps))

Q
Qiao Longfei 已提交
129 130 131 132 133 134 135 136 137 138
    Args:
        learning_rate: A scalar float32 value or a Variable. This
          will be the initial learning rate during training
        decay_steps: A Python `int32` number.
        decay_rate: A Python `float` number.
        staircase: Boolean. If set true, decay the learning rate every decay_steps.

    Returns:
        The decayed learning rate
    """
Y
Yu Yang 已提交
139
    global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
140

141 142 143
    with init_on_cpu():
        div_res = global_step / decay_steps
        if staircase:
144 145
            div_res = ops.floor(div_res)
        decayed_lr = learning_rate * ops.exp(-1 * decay_rate * div_res)
146 147

    return decayed_lr
Q
Qiao Longfei 已提交
148 149


Y
Yu Yang 已提交
150
def inverse_time_decay(learning_rate, decay_steps, decay_rate, staircase=False):
F
fengjiayi 已提交
151 152
    """
    Applies inverse time decay to the initial learning rate.
Q
Qiao Longfei 已提交
153

F
fengjiayi 已提交
154 155 156
    When training a model, it is often recommended to lower the learning rate as the 
    training progresses. By using this function, an inverse decay function will be 
    applied to the initial learning rate.
Q
Qiao Longfei 已提交
157

F
fengjiayi 已提交
158
    >>> if staircase == True:
Y
Yu Yang 已提交
159 160 161 162
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step / decay_step))
    >>> else:
    >>>     decayed_learning_rate = learning_rate / (1 + decay_rate * global_step / decay_step)

Q
Qiao Longfei 已提交
163
    Args:
F
fengjiayi 已提交
164 165 166 167 168
        learning_rate(Variable|float): The initial learning rate.
        decay_steps(int): See the decay computation above.
        decay_rate(float): The decay rate. See the decay computation above.
        staircase(Boolean): If True, decay the learning rate at discrete intervals.
                            Default: False
Q
Qiao Longfei 已提交
169 170

    Returns:
F
fengjiayi 已提交
171
        Variable: The decayed learning rate
F
fengjiayi 已提交
172 173 174 175 176 177 178 179 180 181 182 183

    Examples:
        .. code-block:: python

          base_lr = 0.1
          sgd_optimizer = fluid.optimizer.SGD(
                learning_rate=fluid.layers.inverse_time_decay(
                    learning_rate=base_lr,
                    decay_steps=10000,
                    decay_rate=0.5,
                    staircase=True))
          sgd_optimizer.minimize(avg_cost)
Q
Qiao Longfei 已提交
184
    """
Y
Yu Yang 已提交
185
    global_step = _decay_step_counter()
Q
Qiao Longfei 已提交
186

187 188 189
    with init_on_cpu():
        div_res = global_step / decay_steps
        if staircase:
190
            div_res = ops.floor(div_res)
191 192

        decayed_lr = learning_rate / (1 + decay_rate * div_res)
Q
Qiao Longfei 已提交
193

194
    return decayed_lr
195 196 197 198 199 200 201


def polynomial_decay(learning_rate,
                     decay_steps,
                     end_learning_rate=0.0001,
                     power=1.0,
                     cycle=False):
Q
qiaolongfei 已提交
202 203 204
    """
    Applies polynomial decay to the initial learning rate.

Q
qiaolongfei 已提交
205
    .. code-block:: python
Q
qiaolongfei 已提交
206 207 208 209 210 211 212

     if cycle:
       decay_steps = decay_steps * ceil(global_step / decay_steps)
     else:
       global_step = min(global_step, decay_steps)
       decayed_learning_rate = (learning_rate - end_learning_rate) *
            (1 - global_step / decay_steps) ^ power + end_learning_rate
213 214

    Args:
Q
qiaolongfei 已提交
215
        learning_rate(Variable|float32): A scalar float32 value or a Variable. This
Q
update  
qiaolongfei 已提交
216
          will be the initial learning rate during training.
Q
qiaolongfei 已提交
217
        decay_steps(int32): A Python `int32` number.
Q
update  
qiaolongfei 已提交
218 219 220
        end_learning_rate(float): A Python `float` number.
        power(float): A Python `float` number.
        cycle(bool): If set true, decay the learning rate every decay_steps.
221 222

    Returns:
Q
update  
qiaolongfei 已提交
223
        Variable: The decayed learning rate
224
    """
Y
Yu Yang 已提交
225
    global_step = _decay_step_counter()
226

227 228
    with init_on_cpu():
        if cycle:
229 230
            div_res = ops.ceil(global_step / decay_steps)
            zero_var = tensor.fill_constant(
231
                shape=[1], dtype='float32', value=0.0)
232
            one_var = tensor.fill_constant(
233 234
                shape=[1], dtype='float32', value=1.0)

235
            with control_flow.Switch() as switch:
236
                with switch.case(global_step == zero_var):
237
                    tensor.assign(input=one_var, output=div_res)
238 239
            decay_steps = decay_steps * div_res
        else:
240
            decay_steps_var = tensor.fill_constant(
241
                shape=[1], dtype='float32', value=float(decay_steps))
242
            global_step = ops.elementwise_min(x=global_step, y=decay_steps_var)
243 244 245 246

        decayed_lr = (learning_rate - end_learning_rate) * \
                     ((1 - global_step / decay_steps) ** power) + end_learning_rate
    return decayed_lr
247 248


Y
Yu Yang 已提交
249
def piecewise_decay(boundaries, values):
250 251
    """Applies piecewise decay to the initial learning rate.

X
Xin Pan 已提交
252 253 254 255 256 257 258 259 260 261 262 263
      The algorithm can be described as the code below.

      .. code-block:: python

        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if step < 10000:
            learning_rate = 1.0
        elif 10000 <= step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1
X
Xin Pan 已提交
264 265 266 267 268 269 270 271
    Args:
        boundaries: A list of steps numbers.
        values: A list of learning rate values that will be picked during
            different step boundaries.

    Returns:
        The decayed learning rate.

X
Xin Pan 已提交
272

273 274 275 276 277
    """

    if len(values) - len(boundaries) != 1:
        raise ValueError("len(values) - len(boundaries) should be 1")

Y
Yu Yang 已提交
278
    global_step = _decay_step_counter()
279

280
    with init_on_cpu():
281
        lr = tensor.create_global_var(
282 283 284 285 286 287
            shape=[1],
            value=0.0,
            dtype='float32',
            persistable=True,
            name="learning_rate")

288
        with control_flow.Switch() as switch:
289
            for i in range(len(boundaries)):
290
                boundary_val = tensor.fill_constant(
291
                    shape=[1], dtype='float32', value=float(boundaries[i]))
292
                value_var = tensor.fill_constant(
293
                    shape=[1], dtype='float32', value=float(values[i]))
294
                with switch.case(global_step < boundary_val):
295 296
                    tensor.assign(value_var, lr)
            last_value_var = tensor.fill_constant(
297 298 299 300
                shape=[1],
                dtype='float32',
                value=float(values[len(values) - 1]))
            with switch.default():
301
                tensor.assign(last_value_var, lr)
302 303

    return lr
W
Wu Yi 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341


def append_LARS(params_grads, learning_rate, weight_decay):
    """Applies LARS (LAYER-WISE ADAPTIVE RATE SCALING) to learning rate for
       each layer.

    ```python
        learning_rate *= local_gw_ratio * sqrt(sumsq(param))
                        / (sqrt(sumsq(gradient))+ weight_decay * sqrt(sumsq(param)))
    ```

    Args:
        learning_rate: A learning rate Variable. This
          is the global learning rate for LARS.
        weight_decay: A Python `float` number.

    Returns:
        The decayed learning rate
    """

    def _balanced_weight(param_norm, grad_norm):
        if weight_decay == 1.0:
            return grad_norm + param_norm
        else:
            return grad_norm + weight_decay * param_norm

    for param, grad in params_grads:
        param_lr = param.optimize_attr['learning_rate']
        param_norm = ops.sqrt(nn.reduce_sum(input=ops.square(param)))
        grad_norm = ops.sqrt(nn.reduce_sum(input=ops.square(grad)))
        if type(param_lr) == float and param_lr == 1.0:
            decayed_lr = learning_rate * param_norm \
                         / _balanced_weight(param_norm, grad_norm)
        else:
            decayed_lr = learning_rate * param_lr * param_norm \
                         / _balanced_weight(param_norm, grad_norm)
        # set back param local learning rate
        param.optimize_attr['learning_rate'] = decayed_lr