io.py 42.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
F
fengjiayi 已提交
16
import contextlib
17
import multiprocessing
P
peizhilin 已提交
18
import os
M
minqiyang 已提交
19
import six
Y
yuyang18 已提交
20
import threading
D
dzhwinter 已提交
21

Y
yuyang18 已提交
22
from ..data_feeder import DataFeeder
23 24
from .control_flow import BlockGuard
from .layer_function_generator import templatedoc
Y
yuyang18 已提交
25
from .. import core
Y
Refine  
Yu Yang 已提交
26
from ..executor import global_scope
Y
yuyang18 已提交
27
from ..framework import convert_np_dtype_to_dtype_, default_main_program, \
28
    default_startup_program, program_guard, Program, Variable
Y
yuyang18 已提交
29 30
from ..layer_helper import LayerHelper
from ..unique_name import generate as unique_name
Y
Yu Yang 已提交
31

Y
Yu Yang 已提交
32
__all__ = [
Y
yuyang 已提交
33
    'data', 'open_files', 'read_file', 'shuffle', 'batch', 'double_buffer',
Q
Qiao Longfei 已提交
34 35
    'random_data_generator', 'py_reader', 'create_py_reader_by_data',
    'Preprocessor', 'load'
Y
Yu Yang 已提交
36
]
Y
Yu Yang 已提交
37 38 39 40 41 42 43 44 45 46


def data(name,
         shape,
         append_batch_size=True,
         dtype='float32',
         lod_level=0,
         type=core.VarDesc.VarType.LOD_TENSOR,
         stop_gradient=True):
    """
K
kavyasrinet 已提交
47
    **Data Layer**
Y
Yu Yang 已提交
48

K
kavyasrinet 已提交
49
    This function takes in the input and based on whether data has
C
caoying03 已提交
50
    to be returned back as a minibatch, it creates the global variable by using
Y
Yu Yang 已提交
51
    the helper functions. The global variables can be accessed by all the
C
caoying03 已提交
52
    following operators in the graph.
Y
Yu Yang 已提交
53 54 55 56

    All the input variables of this function are passed in as local variables
    to the LayerHelper constructor.

K
kavyasrinet 已提交
57 58 59
    Args:
       name(str): The name/alias of the function
       shape(list): Tuple declaring the shape.
X
Xin Pan 已提交
60 61 62 63 64
       append_batch_size(bool):
          1. If true, it prepends -1 to the shape.
            For example if shape=[1], the resulting shape is [-1, 1].
          2. If shape contains -1, such as shape=[1, -1],
            append_batch_size will be enforced to be be False (ineffective).
65
       dtype(basestring): The type of data : float32, float_16, int etc
K
kavyasrinet 已提交
66 67 68 69 70 71 72 73 74 75 76
       type(VarType): The output type. By default it is LOD_TENSOR.
       lod_level(int): The LoD Level. 0 means the input data is not a sequence.
       stop_gradient(bool): A boolean that mentions whether gradient should flow.

    Returns:
        Variable: The global variable that gives access to the data.

    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='x', shape=[784], dtype='float32')
Y
Yu Yang 已提交
77 78 79
    """
    helper = LayerHelper('data', **locals())
    shape = list(shape)
M
minqiyang 已提交
80
    for i in six.moves.range(len(shape)):
Y
Yu Yang 已提交
81 82 83 84 85 86 87 88 89
        if shape[i] is None:
            shape[i] = -1
            append_batch_size = False
        elif shape[i] < 0:
            append_batch_size = False

    if append_batch_size:
        shape = [-1] + shape  # append batch size as -1

Y
Yu Yang 已提交
90
    data_var = helper.create_global_variable(
Y
Yu Yang 已提交
91 92 93 94 95
        name=name,
        shape=shape,
        dtype=dtype,
        type=type,
        stop_gradient=stop_gradient,
F
fengjiayi 已提交
96 97
        lod_level=lod_level,
        is_data=True)
Y
Yu Yang 已提交
98
    return data_var
T
typhoonzero 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123


class BlockGuardServ(BlockGuard):
    """
    BlockGuardServ class.

    BlockGuardServ class is used to create an op with a block in a program.
    """

    def __init__(self, server):
        if not (isinstance(server, ListenAndServ)):
            raise TypeError("BlockGuardServ takes a ListenAndServ")
        super(BlockGuardServ, self).__init__(server.helper.main_program)
        self.server = server

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False

        self.server.complete_op()
        return super(BlockGuardServ, self).__exit__(exc_type, exc_val, exc_tb)


class ListenAndServ(object):
    """
Y
yi.wu 已提交
124
    **ListenAndServ Layer**
T
typhoonzero 已提交
125

Y
yi.wu 已提交
126 127 128 129 130 131 132 133 134
    ListenAndServ is used to create a rpc server bind and listen
    on specific TCP port, this server will run the sub-block when
    received variables from clients.

    Args:
        endpoint(string): IP:port string which the server will listen on.
        inputs(list): a list of variables that the server will get from clients.
        fan_in(int): how many client are expected to report to this server, default: 1.
        optimizer_mode(bool): whether to run the server as a parameter server, default: True.
Y
update  
yi.wu 已提交
135

Y
yi.wu 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    Examples:
        .. code-block:: python

            with fluid.program_guard(main):
                serv = layers.ListenAndServ(
                    "127.0.0.1:6170", ["X"], optimizer_mode=False)
                with serv.do():
                    x = layers.data(
                        shape=[32, 32],
                        dtype='float32',
                        name="X",
                        append_batch_size=False)
                    fluid.initializer.Constant(value=1.0)(x, main.global_block())
                    layers.scale(x=x, scale=10.0, out=out_var)

Y
yi.wu 已提交
151 152
            exe = fluid.Executor(place)
            exe.run(main)
T
typhoonzero 已提交
153 154
    """

Y
Yancey1989 已提交
155
    def __init__(self, endpoint, inputs, fan_in=1, optimizer_mode=True):
156
        self.helper = LayerHelper("listen_and_serv")
Y
Yancey1989 已提交
157
        self.inputs = inputs
T
typhoonzero 已提交
158 159 160
        self.outputs = []
        self.endpoint = endpoint
        self.fan_in = fan_in
T
typhoonzero 已提交
161 162
        # FIXME(typhoonzero): add optimizer_mode is stupid, should make it more
        # general.
T
WIP  
typhoonzero 已提交
163
        self.optimizer_mode = optimizer_mode
T
typhoonzero 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176

    def do(self):
        return BlockGuardServ(self)

    def get_params_and_grads(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()
        # params and grads in the same order.
        params = list()
        grads = list()
        for op in current_block.ops:
            # FIXME(typhoonzero): op.inputs is None if it's cloned.
T
WIP  
typhoonzero 已提交
177 178 179 180 181 182 183 184
            if self.optimizer_mode:
                if "Grad" in op.inputs and "Param" in op.inputs:
                    params.append(op.inputs["Param"].name)
                    grads.append(op.inputs["Grad"].name)
            else:
                # simple recv mode, recv operators inputs.
                for iname in op.input_names:
                    for in_var_name in op.input(iname):
T
typhoonzero 已提交
185 186
                        params.append(parent_block.var(in_var_name))
                        grads.append(parent_block.var(in_var_name))
T
typhoonzero 已提交
187 188 189

        return params, grads

T
typhoonzero 已提交
190 191 192 193 194 195 196
    def parent_block(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

T
typhoonzero 已提交
197 198 199 200 201 202
    def complete_op(self):
        main_program = self.helper.main_program
        current_block = main_program.current_block()
        parent_block = self.parent_block()

        parent_block.append_op(
203
            type='listen_and_serv',
Y
Yancey1989 已提交
204
            inputs={"X": self.inputs},
T
typhoonzero 已提交
205 206 207 208
            outputs={},
            attrs={
                'endpoint': self.endpoint,
                'Fanin': self.fan_in,
Y
Yancey1989 已提交
209 210 211
                'optimize_blocks': [
                    current_block
                ],  # did not support multiple optimize blocks in layers
212
                'sync_mode': True,  # did not support async now in layers
Q
qiaolongfei 已提交
213
                'grad_to_block_id': [""]
T
typhoonzero 已提交
214 215 216
            })


217
def Send(endpoints, send_vars, dummy_output=None, sync=True):
T
typhoonzero 已提交
218
    """
Y
yi.wu 已提交
219 220
    Send variables to the server side, and get vars from server
    side when server have finished running server side program.
T
typhoonzero 已提交
221 222

    Args:
Y
yi.wu 已提交
223
        endpoints (str): comma seperated IP:PORT pairs in the order
T
typhoonzero 已提交
224
                   of send_vars to send
Y
yi.wu 已提交
225 226
        send_vars (list): variables to send to server
        sync (bool): whether to wait the request finish
T
typhoonzero 已提交
227 228 229 230

    """
    assert (type(send_vars) == list)

231 232 233 234 235 236 237
    if dummy_output is None:
        dummy_output = []
    elif isinstance(dummy_output, Variable):
        dummy_output = [dummy_output]

    assert (type(dummy_output) == list)

T
typhoonzero 已提交
238
    epmap = endpoints.split(",")
T
typhoonzero 已提交
239
    endpoints = list(set(epmap))
T
typhoonzero 已提交
240 241

    helper = LayerHelper("Send", **locals())
Y
Yancey1989 已提交
242
    rpc_op_role_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
Y
Yancey1989 已提交
243

T
typhoonzero 已提交
244 245 246
    helper.append_op(
        type="send",
        inputs={"X": send_vars},
247
        outputs={"Out": dummy_output},
Y
Yancey1989 已提交
248 249 250 251 252
        attrs={
            "endpoints": endpoints,
            "epmap": epmap,
            rpc_op_role_name: core.op_proto_and_checker_maker.OpRole.RPC
        })
Y
yi.wu 已提交
253
    if sync:
W
Wu Yi 已提交
254 255 256 257 258
        helper.append_op(
            type="send_barrier",
            inputs={"X": dummy_output},
            outputs={"Out": []},
            attrs={"endpoints": endpoints})
259 260


261
def Recv(endpoints, get_vars, dummy_input=None, sync=True):
262
    """
Y
yi.wu 已提交
263
    Receive variables from server side
264 265

    Args:
Y
yi.wu 已提交
266
        endpoints (str): comma seperated IP:PORT pairs in the order
267
                   of send_vars to send
Y
yi.wu 已提交
268 269
        get_vars (list): vars to get from server after send completes.
        sync (bool): whether to wait the request finish
270

Y
yi.wu 已提交
271 272
    Returns:
        list: list of received variables
273 274 275
    """
    assert (type(get_vars) == list)

276 277 278 279 280 281 282
    if dummy_input is None:
        dummy_input = []
    elif isinstance(dummy_input, Variable):
        dummy_input = [dummy_input]

    assert (type(dummy_input) == list)

283 284 285 286 287 288
    epmap = endpoints.split(",")
    endpoints = list(set(epmap))

    helper = LayerHelper("Recv", **locals())
    helper.append_op(
        type="recv",
289
        inputs={"X": dummy_input},
290 291 292
        outputs={"Out": get_vars},
        attrs={"endpoints": endpoints,
               "epmap": epmap})
Y
yi.wu 已提交
293
    if sync:
W
Wu Yi 已提交
294 295 296 297
        helper.append_op(
            type="fetch_barrier",
            outputs={"Out": get_vars},
            attrs={"endpoints": endpoints})
Y
yi.wu 已提交
298
    return get_vars
Y
Yu Yang 已提交
299 300


Y
Refine  
Yu Yang 已提交
301 302 303 304 305 306 307 308 309 310
def monkey_patch_reader_methods(reader):
    def __get_reader__():
        scope = global_scope()
        var = scope.find_var(reader.name)
        return var.get_reader()

    def reset():
        return __get_reader__().reset()

    reader.reset = reset
Y
Yu Yang 已提交
311 312
    reader.stop_gradient = True
    reader.persistable = True
Y
Refine  
Yu Yang 已提交
313 314 315
    return reader


Y
Yu Yang 已提交
316 317 318 319
def _copy_reader_var_(block, var):
    new_var = block.create_var(name=var.name, type=core.VarDesc.VarType.READER)
    new_var.desc.set_shapes(var.desc.shapes())
    new_var.desc.set_dtypes(var.desc.dtypes())
S
sneaxiy 已提交
320
    new_var.desc.set_lod_levels(var.desc.lod_levels())
Y
Yu Yang 已提交
321
    new_var.persistable = True
F
fengjiayi 已提交
322 323 324 325
    return new_var


def _copy_reader_create_op_(block, op):
F
fengjiayi 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    input_param_names = op.input_names
    new_input_map = {}
    for param_name in input_param_names:
        new_input_map[param_name] = []
        arg_names = op.input(param_name)
        for arg_name in arg_names:
            new_input_map[param_name].append(block.var(arg_name))

    output_param_names = op.output_names
    new_output_map = {}
    for param_name in output_param_names:
        new_output_map[param_name] = []
        arg_names = op.output(param_name)
        for arg_name in arg_names:
            new_output_map[param_name].append(block.var(arg_name))

F
fengjiayi 已提交
342
    new_op = block.append_op(
F
fengjiayi 已提交
343 344 345
        type=op.type,
        inputs=new_input_map,
        outputs=new_output_map,
J
JiayiFeng 已提交
346
        attrs=op.all_attrs())
F
fengjiayi 已提交
347
    return new_op
Y
Yu Yang 已提交
348 349


W
wopeizl 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
@templatedoc(op_type='create_recordio_file_reader')
def open_recordio_file(filename,
                       shapes,
                       lod_levels,
                       dtypes,
                       pass_num=1,
                       for_parallel=True):
    """
    ${comment}

    Args:
       filename(${filename_type}): ${filename_comment}.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(${lod_levels_type}): ${lod_levels_comment}.
       dtypes(list): List of strs which declaring data type.
       pass_num(int): Number of passes to run.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       ${out_comment}.

    Examples:

        >>> import paddle.fluid as fluid
        >>> reader = fluid.layers.io.open_recordio_file(
        >>>                               filename='./data.recordio',
        >>>                               shapes=[(3,224,224), (1)],
        >>>                               lod_levels=[0, 0],
        >>>                               dtypes=['float32', 'int64'])
        >>> # Via the reader, we can use 'read_file' layer to get data:
        >>> image, label = fluid.layers.io.read_file(reader)
    """
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('open_recordio_file')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_recordio_file_reader',
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'filename': filename,
            'ranks': ranks
        })
Y
Yu Yang 已提交
404

W
wopeizl 已提交
405 406 407 408
    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)
F
fengjiayi 已提交
409

W
wopeizl 已提交
410 411
    if pass_num > 1:
        main_prog_var = multi_pass(reader=main_prog_var, pass_num=pass_num)
F
fengjiayi 已提交
412

W
wopeizl 已提交
413
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
414 415


F
fengjiayi 已提交
416 417 418 419 420
def random_data_generator(low, high, shapes, lod_levels, for_parallel=True):
    """
    Create a uniform random data generator

    This layer returns a Reader Variable.
421 422 423
    Instead of opening a file and reading data from it, this
    Reader Variable generates float uniform random data by itself.
    It can be used as a dummy reader to test a network without
F
fengjiayi 已提交
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
    opening a real file.

    Args:
       low(float): The lower bound of data's uniform distribution.
       high(float): The upper bound of data's uniform distribution.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       for_parallel(Bool): Set it as True if you are going to run
            subsequent operators in parallel.

    Returns:
       Variable: A Reader Variable from which we can get random data.

    Examples:

439
        .. code-block:: python
F
fengjiayi 已提交
440

441 442 443 444 445 446 447
            reader = fluid.layers.random_data_generator(
                                             low=0.0,
                                             high=1.0,
                                             shapes=[[3,224,224], [1]],
                                             lod_levels=[0, 0])
            # Via the reader, we can use 'read_file' layer to get data:
            image, label = fluid.layers.read_file(reader)
F
fengjiayi 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    """
    dtypes = [core.VarDesc.VarType.FP32] * len(shapes)
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

    var_name = unique_name('random_data_generator')

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
    startup_blk.append_op(
        type='create_random_data_generator',
        outputs={'Out': [startup_var]},
        attrs={
            'low': low,
            'high': high,
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True
    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    return monkey_patch_reader_methods(main_prog_var)


Q
Qiao Longfei 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
def _py_reader(capacity,
               shapes,
               dtypes,
               lod_levels=None,
               name=None,
               use_double_buffer=True,
               feed_list=None):

    if feed_list is not None:
        if not isinstance(feed_list, list):
            raise TypeError("feed_list should be a list of Variable"
                            " instead of " + str(type(feed_list)))
        lod_levels = []
        dtypes = []
        shape_concat = []
        ranks = []
        shapes = []

Q
Qiao Longfei 已提交
498 499 500 501 502 503
        for feed_data in feed_list:
            dtypes.append(feed_data.dtype)
            shape_concat.extend(feed_data.shape)
            ranks.append(len(feed_data.shape))
            shapes.append(feed_data.shape)
            lod_levels.append(feed_data.lod_level)
Q
Qiao Longfei 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    else:
        dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
        shape_concat = []
        ranks = []

        for shape in shapes:
            shape_concat.extend(shape)
            ranks.append(len(shape))

        if lod_levels is None:
            lod_levels = [0] * len(shapes)

    if name is None:
        queue_name = unique_name('lod_tensor_blocking_queue')
        reader_name = unique_name('create_py_reader')
        double_buffer_name = unique_name('double_buffer')
    else:
        queue_name = "_".join([name, "queue"])
        reader_name = "_".join([name, "reader"])
        double_buffer_name = "_".join([name, "double_buffer"])

    var = global_scope().var(queue_name)
    feed_queue = core.init_lod_tensor_blocking_queue(var, capacity, shapes)

    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=reader_name)
    startup_blk.append_op(
        type='create_py_reader',
        inputs={'blocking_queue': [queue_name]},
        outputs={'Out': [startup_var]},
        attrs={
            'shape_concat': shape_concat,
            'lod_levels': lod_levels,
            'ranks': ranks
        })

    startup_var.desc.set_dtypes(dtypes)
    startup_var.persistable = True

    main_prog_var = _copy_reader_var_(default_main_program().current_block(),
                                      startup_var)

    reader = monkey_patch_reader_methods(main_prog_var)
    if use_double_buffer:
        double_buffer_reader = double_buffer(reader, name=double_buffer_name)
        # we return a double buffer reader. However, the reset method comes from
        # py_reader.
        double_buffer_reader.reset = reader.reset
        reader = double_buffer_reader

    # monkey patch py_reader special methods
    reader.queue = feed_queue
    current_reset_method = reader.reset
    reader.thread = None
    reader.tensor_provider = None
    reader.exited = False

    def start_provide_thread(func):
        def __provider_thread__():
            for tensors in func():
                array = core.LoDTensorArray()
                for item in tensors:
                    if not isinstance(item, core.LoDTensor):
                        tmp = core.LoDTensor()
                        tmp.set(item, core.CPUPlace())
                        item = tmp

                    array.append(item)

                if reader.exited:
                    break
                feed_queue.push(array)
                if reader.exited:
                    break
            feed_queue.close()

        reader.thread = threading.Thread(target=__provider_thread__)
        reader.thread.daemon = True
        reader.thread.start()

    def __set_tensor_provider__(func):
        reader.tensor_provider = func

    def __set_paddle_reader__(paddle_reader):
        with program_guard(Program(), Program()):
            actual_feed_list = feed_list
            if actual_feed_list is None:
                actual_feed_list = []
                counter = 0
                for dtype, shape, lod_level in zip(dtypes, shapes, lod_levels):
                    name = str(counter)
                    actual_feed_list.append(
                        data(
                            name=name,
                            dtype=dtype,
                            shape=shape,
                            lod_level=lod_level))
                    counter += 1

Q
Qiao Longfei 已提交
603
            data_names = [feed_data.name for feed_data in actual_feed_list]
Q
Qiao Longfei 已提交
604 605 606 607 608 609 610
            feeder = DataFeeder(
                feed_list=actual_feed_list, place=core.CPUPlace())
            paddle_reader = feeder.decorate_reader(
                paddle_reader, multi_devices=False)

        def __tensor_provider__():
            for slots in paddle_reader():
Q
Qiao Longfei 已提交
611
                yield [slots[data_name] for data_name in data_names]
Q
Qiao Longfei 已提交
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632

        __set_tensor_provider__(__tensor_provider__)

    def __reset__():
        current_reset_method()
        if reader.thread is not None and reader.tensor_provider is not None:
            reader.exited = True
            reader.thread.join()
            reader.exited = False

    def __start__():
        start_provide_thread(reader.tensor_provider)

    reader.reset = __reset__
    reader.decorate_tensor_provider = __set_tensor_provider__
    reader.decorate_paddle_reader = __set_paddle_reader__
    reader.start = __start__

    return reader


Y
yuyang18 已提交
633 634 635 636 637 638
def py_reader(capacity,
              shapes,
              dtypes,
              lod_levels=None,
              name=None,
              use_double_buffer=True):
S
sneaxiy 已提交
639
    """
640
    Create a Python reader for data feeding in Python
F
fengjiayi 已提交
641

642
    This layer returns a Reader Variable.
643 644
    The Reader provides :code:`decorate_paddle_reader()` and
    :code:`decorate_tensor_provider()` to set a Python generator as the data
645 646 647 648 649 650 651 652
    source in Python side. When :code:`Executor::Run()` is invoked in C++
    side, the data from the generator would be read automatically. Unlike
    :code:`DataFeeder.feed()`, the data reading process and
    :code:`Executor::Run()` process can run in parallel using
    :code:`py_reader`. The :code:`start()` method of the Reader should be
    called when each pass begins, while the :code:`reset()` method should be
    called when the pass ends and :code:`fluid.core.EOFException` raises.
    Note that :code:`Program.clone()` method cannot clone :code:`py_reader`.
S
sneaxiy 已提交
653 654

    Args:
655
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
Y
yuyang18 已提交
656 657 658 659 660
       shapes(list|tuple): List of tuples which declaring data shapes.
       dtypes(list|tuple): List of strs which declaring data type.
       lod_levels(list|tuple): List of ints which declaring data lod_level.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
661
       use_double_buffer(bool): Whether use double buffer or not.
S
sneaxiy 已提交
662 663

    Returns:
664
       Variable: A Reader from which we can get feeding data.
S
sneaxiy 已提交
665 666 667

    Examples:

668
        1. The basic usage of :code:`py_reader` is as follows:
S
sneaxiy 已提交
669

670 671 672 673 674 675 676
        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> reader = fluid.layers.py_reader(capacity=64,
        >>>                                 shapes=[(-1,3,224,224), (-1,1)],
        >>>                                 dtypes=['float32', 'int64'])
        >>> reader.decorate_paddle_reader(
X
Xin Pan 已提交
677
        >>>     paddle.reader.shuffle(paddle.batch(mnist.train())
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
        >>>
        >>> img, label = fluid.layers.read_file(reader)
        >>> loss = network(img, label) # some network definition
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
        >>>
        >>> exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
        >>> for epoch_id in range(10):
        >>>     reader.start()
        >>>     try:
        >>>         while True:
        >>>             exe.run(fetch_list=[loss.name])
        >>>     except fluid.core.EOFException:
        >>>         reader.reset()

        2. When training and testing are both performed, two different
        :code:`py_reader` should be created with different names, e.g.:

        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> def network(reader):
        >>>     img, label = fluid.layers.read_file(reader)
        >>>     # Here, we omitted the network definition
        >>>     return loss
        >>>
        >>> train_reader = fluid.layers.py_reader(capacity=64,
        >>>                                       shapes=[(-1,3,224,224), (-1,1)],
        >>>                                       dtypes=['float32', 'int64'],
        >>>                                       name='train_reader')
        >>> train_reader.decorate_paddle_reader(
X
Xin Pan 已提交
709
        >>>     paddle.reader.shuffle(paddle.batch(mnist.train())
710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
        >>>
        >>> test_reader = fluid.layers.py_reader(capacity=32,
        >>>                                      shapes=[(-1,3,224,224), (-1,1)],
        >>>                                      dtypes=['float32', 'int64'],
        >>>                                      name='test_reader')
        >>> test_reader.decorate_paddle_reader(paddle.batch(mnist.test(), 512))
        >>>
        >>> # Create train_main_prog and train_startup_prog
        >>> train_main_prog = fluid.Program()
        >>> train_startup_prog = fluid.Program()
        >>> with fluid.program_guard(train_main_prog, train_startup_prog):
        >>>     # Use fluid.unique_name.guard() to share parameters with test program
        >>>     with fluid.unique_name.guard():
        >>>         train_loss = network(train_reader) # some network definition
        >>>         adam = fluid.optimizer.Adam(learning_rate=0.01)
        >>>         adam.minimize(loss)
        >>>
        >>> # Create test_main_prog and test_startup_prog
        >>> test_main_prog = fluid.Program()
        >>> test_startup_prog = fluid.Program()
        >>> with fluid.program_guard(test_main_prog, test_startup_prog):
        >>>     # Use fluid.unique_name.guard() to share parameters with train program
        >>>     with fluid.unique_name.guard():
        >>>         test_loss = network(test_reader)
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(train_startup_prog)
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(test_startup_prog)
        >>>
        >>> train_exe = fluid.ParallelExecutor(use_cuda=True,
        >>>                 loss_name=train_loss.name, main_program=train_main_prog)
        >>> test_exe = fluid.ParallelExecutor(use_cuda=True,
        >>>                 loss_name=test_loss.name, main_program=test_main_prog)
        >>> for epoch_id in range(10):
743
        >>>     train_reader.start()
744 745 746 747 748 749
        >>>     try:
        >>>         while True:
        >>>             train_exe.run(fetch_list=[train_loss.name])
        >>>     except fluid.core.EOFException:
        >>>         train_reader.reset()
        >>>
750
        >>>     test_reader.start()
751 752 753 754 755
        >>>     try:
        >>>         while True:
        >>>             test_exe.run(fetch_list=[test_loss.name])
        >>>     except fluid.core.EOFException:
        >>>         test_reader.reset()
S
sneaxiy 已提交
756
    """
Q
Qiao Longfei 已提交
757 758 759 760 761 762 763
    return _py_reader(
        capacity=capacity,
        shapes=shapes,
        dtypes=dtypes,
        lod_levels=lod_levels,
        name=name,
        use_double_buffer=use_double_buffer)
Q
Qiao Longfei 已提交
764 765


Q
Qiao Longfei 已提交
766 767 768 769 770 771
def create_py_reader_by_data(capacity,
                             feed_list,
                             name=None,
                             use_double_buffer=True):
    """
    Create a Python reader for data feeding in Python
Q
Qiao Longfei 已提交
772

Q
Qiao Longfei 已提交
773
    This layer returns a Reader Variable.
Q
Qiao Longfei 已提交
774

Q
Qiao Longfei 已提交
775 776
    Works much like py_reader except that it's input is feed_list
    instead of shapes, dtypes and lod_levels
Q
Qiao Longfei 已提交
777

Q
Qiao Longfei 已提交
778 779 780 781 782 783
    Args:
       capacity(int): The buffer capacity maintained by :code:`py_reader`.
       feed_list(list(Variable)): The data feed list.
       name(basestring): The prefix Python queue name and Reader name. None will
            be generated automatically.
       use_double_buffer(bool): Whether use double buffer or not.
Q
Qiao Longfei 已提交
784

Q
Qiao Longfei 已提交
785 786
    Returns:
       Variable: A Reader from which we can get feeding data.
Q
Qiao Longfei 已提交
787

Q
Qiao Longfei 已提交
788
    Examples:
Q
Qiao Longfei 已提交
789

Q
Qiao Longfei 已提交
790
        1. The basic usage of :code:`py_reader` is as follows:
Q
Qiao Longfei 已提交
791

Q
Qiao Longfei 已提交
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
        >>> import paddle.fluid as fluid
        >>> import paddle.dataset.mnist as mnist
        >>>
        >>> image = fluid.layers.data(name='image', shape=[3,224,224], dtypes='float32')
        >>> label = fluid.layers.data(name='label', shape=[1], dtypes='int64')
        >>> reader = fluid.layers.create_py_reader_by_data(capacity=64, feed_list=[image, label])
        >>> reader.decorate_paddle_reader(
        >>>     paddle.reader.shuffle(paddle.batch(mnist.train())
        >>>
        >>> img, label = fluid.layers.read_file(reader)
        >>> loss = network(img, label) # some network definition
        >>>
        >>> fluid.Executor(fluid.CUDAPlace(0)).run(fluid.default_startup_program())
        >>>
        >>> exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
        >>> for epoch_id in range(10):
        >>>     reader.start()
        >>>     try:
        >>>         while True:
        >>>             exe.run(fetch_list=[loss.name])
        >>>     except fluid.core.EOFException:
        >>>         reader.reset()
    """
    return _py_reader(
        capacity=capacity,
        shapes=None,
        dtypes=None,
        lod_levels=None,
        name=name,
        use_double_buffer=use_double_buffer,
        feed_list=feed_list)
S
sneaxiy 已提交
823 824


825 826 827 828
def open_files(filenames,
               shapes,
               lod_levels,
               dtypes,
Y
yuyang18 已提交
829
               thread_num=None,
F
fengjiayi 已提交
830 831
               buffer_size=None,
               pass_num=1,
Y
yuyang18 已提交
832
               is_test=None):
F
fengjiayi 已提交
833 834 835
    """
    Open files

836 837 838
    This layer takes a list of files to read from and returns a Reader Variable.
    Via the Reader Variable, we can get data from given files. All files must
    have name suffixs to indicate their formats, e.g., '*.recordio'.
F
fengjiayi 已提交
839 840 841 842 843 844

    Args:
       filenames(list): The list of file names.
       shapes(list): List of tuples which declaring data shapes.
       lod_levels(list): List of ints which declaring data lod_level.
       dtypes(list): List of strs which declaring data type.
Y
yuyang18 已提交
845 846 847
       thread_num(None): The number of thread to read files.
            Default: min(len(filenames), cpu_number).
       buffer_size(None): The buffer size of reader. Default: 3 * thread_num
F
fengjiayi 已提交
848
       pass_num(int): Number of passes to run.
Y
yuyang18 已提交
849 850 851 852
       is_test(bool|None): Whether `open_files` used for testing or not. If it
            is used for testing, the order of data generated is same as the file
            order. Otherwise, it is not guaranteed the order of data is same
            between every epoch. [Default: False].
F
fengjiayi 已提交
853 854 855 856 857 858 859

    Returns:
       Variable: A Reader Variable via which we can get file data.

    Examples:
       .. code-block:: python

F
fengjiayi 已提交
860
         reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
F
fengjiayi 已提交
861
                                                     './data2.recordio'],
F
fengjiayi 已提交
862 863
                                             shapes=[(3,224,224), (1)],
                                             lod_levels=[0, 0],
Y
yuyang18 已提交
864
                                             dtypes=['float32', 'int64'])
F
fengjiayi 已提交
865 866

         # Via the reader, we can use 'read_file' layer to get data:
F
fengjiayi 已提交
867
         image, label = fluid.layers.io.read_file(reader)
F
fengjiayi 已提交
868
    """
Y
yuyang18 已提交
869 870 871 872 873 874 875 876 877
    if thread_num is None:
        thread_num = min(len(filenames), multiprocessing.cpu_count())
    else:
        thread_num = int(thread_num)

    if buffer_size is None:
        buffer_size = 3 * thread_num
    else:
        buffer_size = int(buffer_size)
Y
yuyang18 已提交
878

M
minqiyang 已提交
879
    if isinstance(filenames, six.string_types):
F
fengjiayi 已提交
880
        filenames = [filenames]
F
fengjiayi 已提交
881 882 883 884 885 886 887 888
    dtypes = [convert_np_dtype_to_dtype_(dt) for dt in dtypes]
    shape_concat = []
    ranks = []

    for shape in shapes:
        shape_concat.extend(shape)
        ranks.append(len(shape))

F
fengjiayi 已提交
889
    multi_file_reader_name = unique_name('multi_file_reader')
F
fengjiayi 已提交
890
    startup_blk = default_startup_program().current_block()
F
fengjiayi 已提交
891
    startup_reader = startup_blk.create_var(name=multi_file_reader_name)
Y
yuyang18 已提交
892 893 894 895
    attrs = {
        'shape_concat': shape_concat,
        'lod_levels': lod_levels,
        'ranks': ranks,
Y
yuyang18 已提交
896 897 898
        'file_names': filenames,
        'thread_num': thread_num,
        'buffer_size': buffer_size
Y
yuyang18 已提交
899 900 901
    }
    if is_test is not None:
        attrs['is_test'] = is_test
F
fengjiayi 已提交
902
    startup_blk.append_op(
Y
yuyang18 已提交
903
        type='open_files', outputs={'Out': [startup_reader]}, attrs=attrs)
F
fengjiayi 已提交
904

F
fengjiayi 已提交
905 906 907 908 909 910 911
    startup_reader.desc.set_dtypes(dtypes)
    startup_reader.persistable = True
    main_prog_reader = _copy_reader_var_(default_main_program().current_block(),
                                         startup_reader)
    if pass_num > 1:
        main_prog_reader = multi_pass(
            reader=main_prog_reader, pass_num=pass_num)
F
fengjiayi 已提交
912

F
fengjiayi 已提交
913 914 915
    return monkey_patch_reader_methods(main_prog_reader)


J
JiayiFeng 已提交
916
def __create_shared_decorated_reader__(op_type, reader, attrs):
Y
Yu Yang 已提交
917 918 919
    var_name = unique_name(op_type)
    startup_blk = default_startup_program().current_block()
    startup_var = startup_blk.create_var(name=var_name)
F
fengjiayi 已提交
920
    startop_op = startup_blk.append_op(
Y
Yu Yang 已提交
921 922 923 924 925
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [startup_var]},
        attrs=attrs)
    startup_var.persistable = True
F
fengjiayi 已提交
926 927 928 929
    main_prog_block = default_main_program().current_block()
    main_prog_var = _copy_reader_var_(main_prog_block, startup_var)
    _copy_reader_create_op_(main_prog_block, startop_op)
    return monkey_patch_reader_methods(main_prog_var)
Y
Yu Yang 已提交
930 931


932 933
def __create_unshared_decorated_reader__(op_type, reader, attrs, name=None):
    new_reader_name = name if name is not None else unique_name(op_type)
934 935 936 937 938 939 940 941 942 943
    main_blk = default_main_program().current_block()
    new_reader = main_blk.create_var(name=new_reader_name)
    main_blk.append_op(
        type=op_type,
        inputs={'UnderlyingReader': reader},
        outputs={'Out': [new_reader]},
        attrs=attrs)
    return monkey_patch_reader_methods(new_reader)


F
fengjiayi 已提交
944
def shuffle(reader, buffer_size):
945
    """
946 947 948 949 950 951 952 953 954 955 956 957
    Creates a data reader whose data output is shuffled.
    Output from the iterator that created by original reader will be
    buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
    is determined by argument buf_size.

    Args:
        param reader: the original reader whose output will be shuffled.
        type reader: callable
        param buf_size: shuffle buffer size.
        type buf_size: int
        return: the new reader whose output is shuffled.
        rtype: callable
958
    """
959 960
    return __create_unshared_decorated_reader__(
        'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
Y
Yu Yang 已提交
961 962


J
JiayiFeng 已提交
963
def batch(reader, batch_size):
F
fengjiayi 已提交
964
    """
965 966 967
    This layer is a reader decorator. It takes a reader and adds
    'batching' decoration on it. When reading with the result
    decorated reader, output data will be automatically organized
F
fengjiayi 已提交
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
    to the form of batches.

    Args:
        reader(Variable): The reader to be decorated with 'batching'.
        batch_size(int): The batch size.

    Returns:
        Variable: The reader which has been decorated with 'batching'.

    Examples:
        .. code-block:: python

            raw_reader = fluid.layers.io.open_files(filenames=['./data1.recordio',
                                                           './data2.recordio'],
                                                    shapes=[(3,224,224), (1)],
                                                    lod_levels=[0, 0],
                                                    dtypes=['float32', 'int64'],
                                                    thread_num=2,
                                                    buffer_size=2)
            batch_reader = fluid.layers.batch(reader=raw_reader, batch_size=5)

            # If we read data with the raw_reader:
            #     data = fluid.layers.read_file(raw_reader)
            # We can only get data instance by instance.
992
            #
F
fengjiayi 已提交
993 994
            # However, if we read data with the batch_reader:
            #     data = fluid.layers.read_file(batch_reader)
995 996
            # Each 5 adjacent instances will be automatically combined together
            # to become a batch. So what we get('data') is a batch data instead
F
fengjiayi 已提交
997 998
            # of an instance.
    """
J
JiayiFeng 已提交
999 1000 1001 1002
    return __create_unshared_decorated_reader__(
        'create_batch_reader', reader, {'batch_size': int(batch_size)})


1003
def double_buffer(reader, place=None, name=None):
Y
yuyang18 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    """
    Wrap a double buffer reader. The data will copy to target place with a
    double buffer queue. If the target place is None, the place that executor
    perform on will be used.

    Args:
        reader(Variable): the reader variable need to be wrapped.
        place(Place): the place of target data. Default is the sample place of
            executor perform.

        name(str): Variable name. None if the user does not care.

    Returns:
        wrapped reader with double buffer.

    Examples:

        >>> reader = fluid.layers.open_files(filenames=['somefile'],
        >>>                                  shapes=[[-1, 784], [-1, 1]],
        >>>                                  dtypes=['float32', 'int64'])
        >>> reader = fluid.layers.double_buffer(reader)
        >>> img, label = fluid.layers.read_file(reader)
    """
Y
Yu Yang 已提交
1027 1028 1029
    attrs = dict()
    if place is not None:
        attrs['place'] = str(place).upper()
1030 1031
    return __create_unshared_decorated_reader__(
        'create_double_buffer_reader', reader, attrs, name=name)
Y
Yu Yang 已提交
1032 1033


F
fengjiayi 已提交
1034
def multi_pass(reader, pass_num):
1035 1036
    return __create_shared_decorated_reader__(
        'create_multi_pass_reader', reader, {'pass_num': int(pass_num)})
F
fengjiayi 已提交
1037 1038


F
fengjiayi 已提交
1039
def read_file(reader):
F
fengjiayi 已提交
1040
    """
F
fengjiayi 已提交
1041
    Execute the given reader and get data via it.
F
fengjiayi 已提交
1042

1043 1044
    A reader is also a Variable. It can be a raw reader generated by
    `fluid.layers.open_files()` or a decorated one generated by
F
fengjiayi 已提交
1045 1046 1047 1048
    `fluid.layers.double_buffer()` and so on.

    Args:

F
fengjiayi 已提交
1049
        reader(Variable): The reader to execute.
F
fengjiayi 已提交
1050 1051

    Returns:
F
fengjiayi 已提交
1052
        Tuple[Variable]: Data read via the given reader.
F
fengjiayi 已提交
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

    Examples:
        .. code-block:: python

           data_file = fluid.layers.open_files(
                filenames=['mnist.recordio'],
                shapes=[(-1, 748), (-1, 1)],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"])
            data_file = fluid.layers.double_buffer(
                fluid.layers.batch(data_file, batch_size=64))
            input, label = fluid.layers.read_file(data_file)
    """
Y
Yu Yang 已提交
1066 1067
    helper = LayerHelper('read_file')
    out = [
X
Xin Pan 已提交
1068
        helper.create_variable_for_type_inference(
Y
Yu Yang 已提交
1069
            stop_gradient=True, dtype='float32')
F
fengjiayi 已提交
1070
        for _ in range(len(reader.desc.shapes()))
Y
Yu Yang 已提交
1071 1072
    ]
    helper.append_op(
F
fengjiayi 已提交
1073
        type='read', inputs={'Reader': [reader]}, outputs={'Out': out})
Y
Yu Yang 已提交
1074 1075 1076 1077
    if len(out) == 1:
        return out[0]
    else:
        return out
F
fengjiayi 已提交
1078 1079 1080


class Preprocessor(object):
X
Xin Pan 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089
    """
    A block for data pre-processing in reader.

    Args:
        reader (Variable): A reader variable.
        name (str, default None): The name of the reader.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1090

X
Xin Pan 已提交
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
            preprocessor = fluid.layers.io.Preprocessor(reader=reader)
            with preprocessor.block():
                img, lbl = preprocessor.inputs()
                img_out = img / 2
                lbl_out = lbl + 1
                preprocessor.outputs(img_out, lbl_out)

            data_file = fluid.layers.io.double_buffer(preprocessor())

    """
F
fengjiayi 已提交
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
    BEFORE_SUB_BLOCK = 0
    IN_SUB_BLOCK = 1
    AFTER_SUB_BLOCK = 2

    def __init__(self, reader, name=None):
        self.underlying_reader = reader
        new_reader_name = name if name is not None else unique_name(
            "create_custom_reader")
        self.main_prog = default_main_program()
        self.reader = self.main_prog.current_block().create_var(
            name=new_reader_name)
        self.sub_block = None
        self.source_var_names = None
        self.sink_var_names = None
        self.status = Preprocessor.BEFORE_SUB_BLOCK

X
Xin Pan 已提交
1117
    def _is_completed(self):
F
fengjiayi 已提交
1118 1119 1120 1121 1122
        return self.sub_block and self.source_var_names and self.sink_var_names

    @contextlib.contextmanager
    def block(self):
        self.status = Preprocessor.IN_SUB_BLOCK
W
Wu Yi 已提交
1123
        self.sub_block = self.main_prog._create_block()
F
fengjiayi 已提交
1124
        yield
W
Wu Yi 已提交
1125
        self.main_prog._rollback()
F
fengjiayi 已提交
1126
        self.status = Preprocessor.AFTER_SUB_BLOCK
X
Xin Pan 已提交
1127
        if not self._is_completed():
F
fengjiayi 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
            raise RuntimeError(
                "The definition of preprocessor is incompleted! "
                "Please make sure that you have set input and output "
                "variables by invoking 'inputs' and 'outputs' in "
                "Preprocessor's sub-block.")

    def inputs(self):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.inputs() can only be invoked inside the sub-block."
            )

        source_shapes = self.underlying_reader.desc.shapes()
        source_dtypes = self.underlying_reader.desc.dtypes()
        source_lod_levels = self.underlying_reader.desc.lod_levels()
F
fengjiayi 已提交
1143 1144
        self.source_var_names = [
            unique_name("preprocessor_source")
M
minqiyang 已提交
1145
            for _ in six.moves.range(len(source_shapes))
F
fengjiayi 已提交
1146
        ]
F
fengjiayi 已提交
1147
        source_vars = []
F
fengjiayi 已提交
1148 1149 1150
        for var_name, shape, dtype, lod_level in zip(
                self.source_var_names, source_shapes, source_dtypes,
                source_lod_levels):
F
fengjiayi 已提交
1151
            source_vars.append(self.main_prog.current_block().create_var(
F
fengjiayi 已提交
1152
                name=var_name, shape=shape, dtype=dtype, lod_level=lod_level))
F
fengjiayi 已提交
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
        return source_vars

    def outputs(self, *outs):
        if self.status != Preprocessor.IN_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor.outputs() can only be invoked inside the sub-block."
            )
        self.sink_var_names = [var.name for var in outs]

    def __call__(self, *args, **kwargs):
        if self.status != Preprocessor.AFTER_SUB_BLOCK:
            raise RuntimeError(
                "Preprocessor output can only be retrieved after rnn block.")

        self.main_prog.current_block().append_op(
            type="create_custom_reader",
            inputs={'UnderlyingReader': self.underlying_reader},
            outputs={'Out': [self.reader]},
            attrs={
                "sub_block": self.sub_block,
                "source_var_names": self.source_var_names,
                "sink_var_names": self.sink_var_names
            })
        return monkey_patch_reader_methods(self.reader)
Y
yuyang18 已提交
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202


@templatedoc()
def load(out, file_path, load_as_fp16=None):
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> tmp_tensor = fluid.layers.create_tensor(dtype='float32')
    >>> fluid.layers.load(tmp_tensor, "./tmp_tensor.bin")

    Args:
        out(${out_type}): ${out_comment}.

        file_path(${file_path_type}): ${file_path_comment}.

        load_as_fp16(${load_as_fp16_type}): ${load_as_fp16_comment}.

    Returns:
        None
    """
    helper = LayerHelper("load", **locals())
    attrs = {"file_path": file_path}
    if load_as_fp16 is not None:
        attrs['load_as_fp16'] = load_as_fp16
    helper.append_op(type="load", inputs={}, output={"Out": out}, args=attrs)