teacher_student_sigmoid_loss_op.cc 7.5 KB
Newer Older
H
add API  
heqiaozhi 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
H
heqiaozhi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/teacher_student_sigmoid_loss_op.h"
H
Huihuang Zheng 已提交
16 17 18

#include <memory>

H
heqiaozhi 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class TeacherStudentSigmoidLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
                      "Input(Label)'s rank should be 2.");
H
heqiaozhi 已提交
40 41 42 43 44 45 46 47
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
                        "The 1st dimension of Input(X) and Input(Label) should "
                        "be equal.");
      PADDLE_ENFORCE_EQ(label_dims[1], 1UL,
                        "The 2nd dimension of "
                        "Input(Label) should be 1.");
    }
H
heqiaozhi 已提交
48 49 50 51 52 53 54 55 56 57
    ctx->SetOutputDim("Y", {x_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // teacher_student_sigmoid_loss
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
58 59 60
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
H
heqiaozhi 已提交
61 62 63
  }
};

H
hong 已提交
64 65 66
template <typename T>
class TeacherStudentSigmoidLossGradOpMaker
    : public framework::SingleGradOpMaker<T> {
H
Huihuang Zheng 已提交
67
 public:
H
hong 已提交
68
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
Huihuang Zheng 已提交
69 70

 protected:
H
hong 已提交
71 72
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
H
Huihuang Zheng 已提交
73 74 75

    op->SetType("teacher_student_sigmoid_loss_grad");

H
hong 已提交
76 77 78
    op->SetInput("X", this->Input("X"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
H
Huihuang Zheng 已提交
79

H
hong 已提交
80
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
H
Huihuang Zheng 已提交
81

H
hong 已提交
82
    op->SetAttrMap(this->Attrs());
H
Huihuang Zheng 已提交
83 84 85 86
    return op;
  }
};

H
heqiaozhi 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
class TeacherStudentSigmoidLossGradientOp
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) should be not null.");

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
H
heqiaozhi 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
                        "The 1st dimension of Input(X) and Input(Label) should "
                        "be equal.");
      PADDLE_ENFORCE_EQ(
          x_dims[0], dy_dims[0],
          "The 1st dimension of Input(X) and Input(Y@Grad) should "
          "be equal.");
      PADDLE_ENFORCE_EQ(dy_dims[1], 1,
                        "The 2nd dimension of Input(Y@Grad) should be 1.");
      PADDLE_ENFORCE_EQ(label_dims[1], 1,
                        "When Attr(soft_label) == false, the 2nd dimension of "
                        "Input(Label) should be 1.");
    }
H
heqiaozhi 已提交
120 121 122 123 124 125 126 127 128 129
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // teacher_student_sigmoid_loss
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
130 131 132
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
H
heqiaozhi 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  }
};

class TeacherStudentSigmoidLossOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), a 2-D tensor with shape [N x 1],"
             " where N is the batch size and D is the output. "
             "This input is a probability computed by the previous operator, "
             "which is almost always the result of a softmax operator.");
    AddInput("Label",
             "(Tensor), the ground truth which is a 2-D tensor. "
             "Label is a Tensor<float> with shape [N x 1]. ");
    AddOutput("Y",
              "(Tensor, default Tensor<float>), a 2-D tensor with shape "
              "[N x 1]. The teacher student sigmoid loss.");
151 152
    AddAttr<float>(
        "soft_max_up_bound",
H
heqiaozhi 已提交
153
        "fp32, if input > soft_max_up_bound, input will be bound, default 15.0")
154
        .SetDefault(15.0);
H
heqiaozhi 已提交
155 156 157
    AddAttr<float>("soft_max_lower_bound",
                   "fp32, if input < soft_max_lower_bound, input will be "
                   "bound, default -15.0")
H
heqiaozhi 已提交
158 159 160 161 162 163 164 165
        .SetDefault(-15.0);
    AddComment(R"DOC(
TeacherStudentSigmoidLoss Operator.

It's similarity to SigmoidCrossEntropyWithLogits Operator. The difference is that
we add another label(z') to original.
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))
        z is click or not
166
        z' is teacher value 
H
heqiaozhi 已提交
167 168 169
        label = {-2, -1, [0, 2]}
        when z' is not exist, clk = 0 : label = -2;
        when z' is not exist, clk = 1 : label = -1;
H
heqiaozhi 已提交
170
        when z' is exist , clk = 0 : label = 0 + z';
H
heqiaozhi 已提交
171 172 173 174 175 176 177 178 179 180
        when z' is exist    , clk = 1 : label = 1 + z';

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
181 182 183 184 185
REGISTER_OPERATOR(
    teacher_student_sigmoid_loss, ops::TeacherStudentSigmoidLossOp,
    ops::TeacherStudentSigmoidLossOpMaker,
    ops::TeacherStudentSigmoidLossGradOpMaker<paddle::framework::OpDesc>,
    ops::TeacherStudentSigmoidLossGradOpMaker<paddle::imperative::OpBase>);
H
heqiaozhi 已提交
186 187 188 189 190 191 192 193 194 195 196

REGISTER_OPERATOR(teacher_student_sigmoid_loss_grad,
                  ops::TeacherStudentSigmoidLossGradientOp);

REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss,
                       ops::TeacherStudentSigmoidLossOpKernel<float>,
                       ops::TeacherStudentSigmoidLossOpKernel<double>);

REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss_grad,
                       ops::TeacherStudentSigmoidLossGradOpKernel<float>,
                       ops::TeacherStudentSigmoidLossGradOpKernel<double>);