teacher_student_sigmoid_loss_op.cc 7.5 KB
Newer Older
H
add API  
heqiaozhi 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
H
heqiaozhi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/teacher_student_sigmoid_loss_op.h"
H
Huihuang Zheng 已提交
16 17 18

#include <memory>

H
heqiaozhi 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class TeacherStudentSigmoidLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
                      "Input(Label)'s rank should be 2.");
H
heqiaozhi 已提交
40 41 42 43 44 45 46 47
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
                        "The 1st dimension of Input(X) and Input(Label) should "
                        "be equal.");
      PADDLE_ENFORCE_EQ(label_dims[1], 1UL,
                        "The 2nd dimension of "
                        "Input(Label) should be 1.");
    }
H
heqiaozhi 已提交
48 49 50 51 52 53 54 55 56 57
    ctx->SetOutputDim("Y", {x_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // teacher_student_sigmoid_loss
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
58 59 60
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
H
heqiaozhi 已提交
61 62 63
  }
};

H
Huihuang Zheng 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
class TeacherStudentSigmoidLossGradOpDescMaker
    : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());

    op->SetType("teacher_student_sigmoid_loss_grad");

    op->SetInput("X", Input("X"));
    op->SetInput("Label", Input("Label"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));

    op->SetAttrMap(Attrs());
    return op;
  }
};

H
heqiaozhi 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
class TeacherStudentSigmoidLossGradientOp
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) should be not null.");

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
H
heqiaozhi 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
                        "The 1st dimension of Input(X) and Input(Label) should "
                        "be equal.");
      PADDLE_ENFORCE_EQ(
          x_dims[0], dy_dims[0],
          "The 1st dimension of Input(X) and Input(Y@Grad) should "
          "be equal.");
      PADDLE_ENFORCE_EQ(dy_dims[1], 1,
                        "The 2nd dimension of Input(Y@Grad) should be 1.");
      PADDLE_ENFORCE_EQ(label_dims[1], 1,
                        "When Attr(soft_label) == false, the 2nd dimension of "
                        "Input(Label) should be 1.");
    }
H
heqiaozhi 已提交
119 120 121 122 123 124 125 126 127 128
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // teacher_student_sigmoid_loss
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
129 130 131
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.device_context());
H
heqiaozhi 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  }
};

class TeacherStudentSigmoidLossOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), a 2-D tensor with shape [N x 1],"
             " where N is the batch size and D is the output. "
             "This input is a probability computed by the previous operator, "
             "which is almost always the result of a softmax operator.");
    AddInput("Label",
             "(Tensor), the ground truth which is a 2-D tensor. "
             "Label is a Tensor<float> with shape [N x 1]. ");
    AddOutput("Y",
              "(Tensor, default Tensor<float>), a 2-D tensor with shape "
              "[N x 1]. The teacher student sigmoid loss.");
150 151
    AddAttr<float>(
        "soft_max_up_bound",
H
heqiaozhi 已提交
152
        "fp32, if input > soft_max_up_bound, input will be bound, default 15.0")
153
        .SetDefault(15.0);
H
heqiaozhi 已提交
154 155 156
    AddAttr<float>("soft_max_lower_bound",
                   "fp32, if input < soft_max_lower_bound, input will be "
                   "bound, default -15.0")
H
heqiaozhi 已提交
157 158 159 160 161 162 163 164
        .SetDefault(-15.0);
    AddComment(R"DOC(
TeacherStudentSigmoidLoss Operator.

It's similarity to SigmoidCrossEntropyWithLogits Operator. The difference is that
we add another label(z') to original.
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))
        z is click or not
165
        z' is teacher value 
H
heqiaozhi 已提交
166 167 168
        label = {-2, -1, [0, 2]}
        when z' is not exist, clk = 0 : label = -2;
        when z' is not exist, clk = 1 : label = -1;
H
heqiaozhi 已提交
169
        when z' is exist , clk = 0 : label = 0 + z';
H
heqiaozhi 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182
        when z' is exist    , clk = 1 : label = 1 + z';

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(teacher_student_sigmoid_loss,
                  ops::TeacherStudentSigmoidLossOp,
                  ops::TeacherStudentSigmoidLossOpMaker,
H
Huihuang Zheng 已提交
183
                  ops::TeacherStudentSigmoidLossGradOpDescMaker);
H
heqiaozhi 已提交
184 185 186 187 188 189 190 191 192 193 194

REGISTER_OPERATOR(teacher_student_sigmoid_loss_grad,
                  ops::TeacherStudentSigmoidLossGradientOp);

REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss,
                       ops::TeacherStudentSigmoidLossOpKernel<float>,
                       ops::TeacherStudentSigmoidLossOpKernel<double>);

REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss_grad,
                       ops::TeacherStudentSigmoidLossGradOpKernel<float>,
                       ops::TeacherStudentSigmoidLossGradOpKernel<double>);