nn.py 105.0 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from six.moves import reduce

from .. import core
from ..layers import utils
from . import layers
L
lujun 已提交
22
from ..framework import Variable, in_dygraph_mode, OpProtoHolder, Parameter
M
minqiyang 已提交
23
from ..param_attr import ParamAttr
24
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
25
import numpy as np
26

27
__all__ = [
L
lujun 已提交
28 29
    'Conv2D', 'Conv3D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit',
    'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose',
L
lujun 已提交
30
    'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv'
31
]
M
minqiyang 已提交
32 33


X
Xin Pan 已提交
34
class Conv2D(layers.Layer):
35 36 37 38 39 40 41 42 43 44
    """
    The convolution2D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
    channels, H is the height of the feature, and W is the width of the feature.
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
45
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    for more detials.
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1

    Args:
86
        name_scope(str) : The name for this class.
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python
127

128 129 130 131 132 133 134 135 136 137
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import Conv2D
          import numpy as np

          data = np.random.uniform( -1, 1, [10, 3, 32, 32] ).astype('float32')
          with fluid.dygraph.guard():
              conv2d = Conv2D( "conv2d", 2, 3)
              data = to_variable( data )
              conv = conv2d( data )
138 139 140

    """

M
minqiyang 已提交
141
    def __init__(self,
X
Xin Pan 已提交
142
                 name_scope,
M
minqiyang 已提交
143 144 145 146 147 148 149 150
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
151 152 153
                 use_cudnn=True,
                 act=None,
                 dtype='float32'):
M
minqiyang 已提交
154
        assert param_attr is not False, "param_attr should not be False here."
155
        super(Conv2D, self).__init__(name_scope, dtype)
M
minqiyang 已提交
156 157 158 159
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 2, 'stride')
        self._padding = utils.convert_to_list(padding, 2, 'padding')
        self._dilation = utils.convert_to_list(dilation, 2, 'dilation')
160
        self._act = act
M
minqiyang 已提交
161 162 163
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
164 165 166 167 168
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._dtype = dtype
169 170 171 172 173 174 175
        # if (self._num_channels == self._groups and
        #         num_filters % self._num_channels == 0 and not self._use_cudnn):
        #     self._l_type = 'depthwise_conv2d'
        # else:
        # TODO(jiabin): recover the usage of depthwise_conv2d when it's
        #  kernel fixed https://github.com/PaddlePaddle/Paddle/issues/17275
        self._l_type = 'conv2d'
M
minqiyang 已提交
176

177 178 179 180
    def _build_once(self, input):
        self._num_channels = input.shape[1]
        if self._groups is None:
            num_filter_channels = self._num_channels
M
minqiyang 已提交
181
        else:
182
            if self._num_channels % self._groups != 0:
M
minqiyang 已提交
183
                raise ValueError("num_channels must be divisible by groups.")
184 185 186 187
            num_filter_channels = self._num_channels // self._groups
        filter_size = utils.convert_to_list(self._filter_size, 2, 'filter_size')
        filter_shape = [self._num_filters, int(num_filter_channels)
                        ] + filter_size
M
minqiyang 已提交
188 189

        def _get_default_param_initializer():
190 191
            filter_elem_num = filter_size[0] * filter_size[
                1] * self._num_channels
M
minqiyang 已提交
192 193 194
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

195
        self._filter_param = self.create_parameter(
196
            attr=self._param_attr,
M
minqiyang 已提交
197 198 199 200 201
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        if self._use_cudnn:
202
            self.create_variable(
M
minqiyang 已提交
203 204 205
                name="kCUDNNFwdAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
206
            self.create_variable(
M
minqiyang 已提交
207 208 209
                name="kCUDNNBwdDataAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)
210
            self.create_variable(
M
minqiyang 已提交
211 212 213 214
                name="kCUDNNBwdFilterAlgoCache",
                persistable=True,
                type=core.VarDesc.VarType.RAW)

215
        self._bias_param = self.create_parameter(
216 217
            attr=self._bias_attr,
            shape=[self._num_filters],
M
minqiyang 已提交
218 219
            dtype=self._dtype,
            is_bias=True)
M
minqiyang 已提交
220 221

    def forward(self, input):
M
minqiyang 已提交
222 223 224
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

M
minqiyang 已提交
225 226 227 228 229 230
        self._helper.append_op(
            type=self._l_type,
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
M
minqiyang 已提交
231
            outputs={"Output": pre_bias},
M
minqiyang 已提交
232 233 234 235
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
236
                'groups': self._groups if self._groups else 1,
M
minqiyang 已提交
237 238 239 240
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False,
            })

241 242 243 244 245 246 247 248 249 250 251
        if self._bias_param is not None:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias
M
minqiyang 已提交
252

L
lujun 已提交
253
        # Currently, we don't support inplace in dygraph mode
254
        return self._helper.append_activation(pre_act, act=self._act)
M
minqiyang 已提交
255 256


L
lujun 已提交
257
class Conv3D(layers.Layer):
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
305 306
        name_scope(str) : The name for this class.
        num_filters(int): The number of filter. It is as same as the output image channel.
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

L
lujun 已提交
350 351 352 353 354 355 356 357 358
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')
              conv3d = fluid.dygraph.nn.Conv3D(
                    'Conv3D', num_filters=2, filter_size=3, act="relu")
              ret = conv3d(fluid.dygraph.base.to_variable(data))

359 360
    """

L
lujun 已提交
361 362 363 364 365 366 367 368 369 370 371
    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
372
                 act=None):
L
lujun 已提交
373 374 375 376 377
        assert param_attr is not False, "param_attr should not be False here."
        super(Conv3D, self).__init__(name_scope)
        self._groups = groups
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._padding = utils.convert_to_list(padding, 3, 'padding')
378
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
L
lujun 已提交
379 380 381 382
        self._act = act
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        self._use_cudnn = use_cudnn
383 384 385 386
        self._filter_size = filter_size
        self._num_filters = num_filters
        self._param_attr = param_attr
        self._bias_attr = bias_attr
L
lujun 已提交
387

388
    def _build_once(self, input):
389 390 391 392
        num_channels = input.shape[1]
        self._dtype = self._helper.input_dtype(input)

        if self._groups is None:
L
lujun 已提交
393 394
            num_filter_channels = num_channels
        else:
395
            if num_channels % self._groups != 0:
L
lujun 已提交
396
                raise ValueError("num_channels must be divisible by groups.")
397
            num_filter_channels = num_channels // self._groups
L
lujun 已提交
398

399
        filter_size = utils.convert_to_list(self._filter_size, 3, 'filter_size')
L
lujun 已提交
400

401
        filter_shape = [self._num_filters, num_filter_channels] + filter_size
L
lujun 已提交
402 403 404 405 406 407 408 409

        def _get_default_param_initializer():
            filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
                2] * num_channels
            std = (2.0 / filter_elem_num)**0.5
            return Normal(0.0, std, 0)

        self._filter_param = self.create_parameter(
410
            attr=self._param_attr,
L
lujun 已提交
411 412 413 414 415
            shape=filter_shape,
            dtype=self._dtype,
            default_initializer=_get_default_param_initializer())

        self._bias_param = self.create_parameter(
416 417
            attr=self._bias_attr,
            shape=[self._num_filters],
L
lujun 已提交
418 419 420 421 422 423 424 425
            dtype=self._dtype,
            is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
426
            type='conv3d',
L
lujun 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
            inputs={
                'Input': input,
                'Filter': self._filter_param,
            },
            outputs={"Output": pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn,
                'use_mkldnn': False
            })

        pre_act = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type='elementwise_add',
            inputs={'X': [pre_bias],
                    'Y': [self._bias_param]},
            outputs={'Out': [pre_act]},
            attrs={'axis': 1})

        return self._helper.append_activation(pre_act, act=self._act)


class Conv3DTranspose(layers.Layer):
L
lujun 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
    """
    **Convlution3D transpose layer**

    The convolution3D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1

    Args:
506
        name_scope(str) : The name for this class.
L
lujun 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain three integers, (image_D, image_H, image_W). This
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable storing the convolution transpose result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

L
lujun 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32')

             conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose(
                    'Conv3DTranspose',
                    num_filters=12,
                    filter_size=12,
                    use_cudnn=False)
             ret = conv3dTranspose(fluid.dygraph.base.to_variable(data))

L
lujun 已提交
570 571
    """

L
lujun 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
    def __init__(self,
                 name_scope,
                 num_filters,
                 output_size=None,
                 filter_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None,
                 name=None):
        super(Conv3DTranspose, self).__init__(name_scope)
        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")
        assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
        self._padding = utils.convert_to_list(padding, 3, 'padding')
        self._stride = utils.convert_to_list(stride, 3, 'stride')
        self._dilation = utils.convert_to_list(dilation, 3, 'dilation')
        self._param_attr = param_attr
        self._filter_size = filter_size
        self._output_size = output_size
        self._groups = 1 if groups is None else groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._bias_attr = bias_attr
        self._act = act

602
    def _build_once(self, input):
L
lujun 已提交
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        self._dtype = self._helper.input_dtype(input)
        self._input_channel = input.shape[1]

        if self._filter_size is None:
            if self._output_size is None:
                raise ValueError(
                    "output_size must be set when filter_size is None")
            if isinstance(self._output_size, int):
                self._output_size = [self._output_size, self._output_size]

            d_in = input.shape[2]
            h_in = input.shape[3]
            w_in = input.shape[4]

            filter_size_d = (self._output_size[0] -
                             (d_in - 1) * self._stride[0] + 2 * self._padding[0]
                             - 1) // self._dilation[0] + 1
            filter_size_h = (self._output_size[1] -
                             (h_in - 1) * self._stride[1] + 2 * self._padding[1]
                             - 1) // self._dilation[1] + 1
            filter_size_w = (self._output_size[2] -
                             (w_in - 1) * self._stride[2] + 2 * self._padding[2]
                             - 1) // self._dilation[2] + 1
            self._filter_size = [filter_size_d, filter_size_h, filter_size_w]
        else:
            self._filter_size = utils.convert_to_list(
                self._filter_size, 3, 'conv3d_transpose.filter_size')

        filter_shape = [
            self._input_channel, self._num_filters // self._groups
        ] + self._filter_size
        self._img_filter = self.create_parameter(
            dtype=self._dtype, shape=filter_shape, attr=self._param_attr)
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)
        self._helper.append_op(
            type="conv3d_transpose",
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups if self._groups else 1,
                'use_cudnn': self._use_cudnn
            })

        if self._bias_attr:
            pre_act = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_act]},
                attrs={'axis': 1})
        else:
            pre_act = pre_bias

        # Currently, we don't support inplace in imperative mode
        return self._helper.append_activation(pre_act, act=self._act)


X
Xin Pan 已提交
675
class Pool2D(layers.Layer):
676
    """
677 678 679 680 681
    The pooling2d operation calculates the output based on the input, pooling_type and ksize, strides,
    paddings parameters.Input(X) and output(Out) are in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(ksize, strides, paddings) are two elements. These two elements represent height and width, respectively.
    The input(X) size and output(Out) size may be different.
682 683

    Args:
684
        name_scope(str) : The name of this class.
685 686
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
687 688
            Otherwise, the pool kernel size will be a square of an int. Default: -1
        pool_type(str) : The pooling type, can be "max" for max-pooling and "avg" for average-pooling. Default: max
689
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
690 691
            it must contain two integers, (pool_stride_Height, pool_stride_Width). Otherwise,
            the pool stride size will be a square of an int. Default: 1
692 693
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
694 695 696 697 698 699 700
            Otherwise, the pool padding size will be a square of an int. Default: 0
        global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
            kernel size and paddings will be ignored. Default: False
        use_cudnn (bool): Only used in cudnn kernel, need install cudnn. Default: True
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width.
            False is the default. If it is set to False, the floor function will be used. Default: False
        exclusive (bool): Whether to exclude padding points in average pooling mode. Default: True
701 702 703 704 705 706 707 708 709 710 711 712 713

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

714 715 716 717 718 719 720
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
             data = numpy.random.random((3, 32, 32)).astype('float32')

             pool2d = fluid.dygraph.Pool2D("pool2d",pool_size=2,
721 722 723
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
724
             pool2d_res = pool2d(data)
725 726 727

    """

M
minqiyang 已提交
728
    def __init__(self,
X
Xin Pan 已提交
729
                 name_scope,
M
minqiyang 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
                 pool_size=-1,
                 pool_type="max",
                 pool_stride=1,
                 pool_padding=0,
                 global_pooling=False,
                 use_cudnn=True,
                 ceil_mode=False,
                 exclusive=True,
                 dtype=core.VarDesc.VarType.FP32):
        if pool_type not in ["max", "avg"]:
            raise ValueError(
                "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
                str(pool_type))

        if global_pooling is False and pool_size == -1:
            raise ValueError(
                "When the global_pooling is False, pool_size must be passed "
                "and be a valid value. Received pool_size: " + str(pool_size))

        if not isinstance(use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

X
Xin Pan 已提交
752
        super(Pool2D, self).__init__(name_scope, dtype=dtype)
M
minqiyang 已提交
753 754 755 756 757 758 759 760 761 762 763 764 765

        self._pool_type = pool_type
        self._pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
        self._pool_padding = utils.convert_to_list(pool_padding, 2,
                                                   'pool_padding')
        self._pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')
        self._global_pooling = global_pooling
        self._use_cudnn = use_cudnn
        self._ceil_mode = ceil_mode
        self._exclusive = exclusive
        self._l_type = 'pool2d'

    def forward(self, input):
M
minqiyang 已提交
766 767
        pool_out = self._helper.create_variable_for_type_inference(self._dtype)

M
minqiyang 已提交
768 769 770
        self._helper.append_op(
            type=self._l_type,
            inputs={"X": input},
M
minqiyang 已提交
771
            outputs={"Out": pool_out},
M
minqiyang 已提交
772 773 774 775 776 777 778 779 780 781 782
            attrs={
                "pooling_type": self._pool_type,
                "ksize": self._pool_size,
                "global_pooling": self._global_pooling,
                "strides": self._pool_stride,
                "paddings": self._pool_padding,
                "use_cudnn": self._use_cudnn,
                "ceil_mode": self._ceil_mode,
                "use_mkldnn": False,
                "exclusive": self._exclusive,
            })
M
minqiyang 已提交
783
        return pool_out
M
minqiyang 已提交
784 785


X
Xin Pan 已提交
786
class FC(layers.Layer):
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
    """
    **Fully Connected Layer**

    This function creates a fully connected layer in the network. It can take
    one or multiple tensors as its inputs(input can be a list of Variable, see
    Args in detail). It creates a variable called weights for each input tensor,
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.

    When the input is single tensor:

    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:

    .. math::

        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})

    In the above equation:

    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
    * :math:`b`: The bias parameter created by this layer (if needed).
    * :math:`Act`: The activation function.
    * :math:`Out`: The output tensor.

    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

    Args:
841
        name_scope(str): The name of this class.
842
        size(int): The number of output units in this layer.
843
        num_flatten_dims (int): The fc layer can accept an input tensor with more than
844 845 846 847 848 849 850
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
851 852
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Default: 1
        param_attr (ParamAttr|list of ParamAttr|None): The parameter attribute for learnable
853 854 855 856
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
857 858
        act (str|None): Activation to be applied to the output of this layer.
        is_test(bool): A flag indicating whether execution is in test phase. Default: False
859
        dtype(str): Dtype used for weight
860 861 862 863 864 865

    Raises:
        ValueError: If rank of the input tensor is less than 2.

    Examples:
        .. code-block:: python
866

867 868 869 870
          from paddle.fluid.dygraph.base import to_variable
          import paddle.fluid as fluid
          from paddle.fluid.dygraph import FC
          import numpy as np
871

872 873 874 875 876
          data = np.random.uniform( -1, 1, [30, 10, 32] ).astype('float32')
          with fluid.dygraph.guard():
              fc = FC( "fc", 64, num_flatten_dims=2)
              data = to_variable( data )
              conv = fc( data )
877 878 879

    """

M
minqiyang 已提交
880
    def __init__(self,
X
Xin Pan 已提交
881
                 name_scope,
M
minqiyang 已提交
882
                 size,
883
                 num_flatten_dims=1,
M
minqiyang 已提交
884
                 param_attr=None,
M
minqiyang 已提交
885
                 bias_attr=None,
886 887 888
                 act=None,
                 is_test=False,
                 dtype="float32"):
889
        super(FC, self).__init__(name_scope, dtype)
M
minqiyang 已提交
890

M
minqiyang 已提交
891
        self._size = size
M
minqiyang 已提交
892 893
        self._num_flatten_dims = num_flatten_dims
        self._dtype = dtype
894
        self._param_attr = param_attr
895
        self._bias_attr = bias_attr
896
        self._act = act
897 898 899 900 901 902 903 904 905 906
        self.__w = list()

    @property
    def _w(self, i=0):
        return self.__w[i]

    @_w.setter
    def _w(self, value, i=0):
        assert isinstance(value, Parameter)
        self.__w[i] = value
M
minqiyang 已提交
907

908
    def _build_once(self, input):
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            input_shape = inp.shape

            param_shape = [
                reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:],
                       1)
            ] + [self._size]
            self.__w.append(
                self.add_parameter(
                    '_w%d' % i,
                    self.create_parameter(
                        attr=param,
                        shape=param_shape,
                        dtype=self._dtype,
                        is_bias=False)))
            i += 1

        size = list([self._size])
        self._b = self.create_parameter(
            attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True)
M
minqiyang 已提交
931 932

    def forward(self, input):
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959
        mul_results = list()
        i = 0
        for inp, param in self._helper.iter_inputs_and_params(input,
                                                              self._param_attr):
            tmp = self._helper.create_variable_for_type_inference(self._dtype)
            self._helper.append_op(
                type="mul",
                inputs={"X": inp,
                        "Y": self.__w[i]},
                outputs={"Out": tmp},
                attrs={
                    "x_num_col_dims": self._num_flatten_dims,
                    "y_num_col_dims": 1
                })
            i += 1
            mul_results.append(tmp)

        if len(mul_results) == 1:
            pre_bias = mul_results[0]
        else:
            pre_bias = self._helper.create_variable_for_type_inference(
                self._dtype)
            self._helper.append_op(
                type="sum",
                inputs={"X": mul_results},
                outputs={"Out": pre_bias},
                attrs={"use_mkldnn": False})
M
minqiyang 已提交
960

961 962 963 964 965 966 967 968 969 970 971
        if self._b:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [pre_bias],
                        'Y': [self._b]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': self._num_flatten_dims})
        else:
            pre_activation = pre_bias
L
lujun 已提交
972
        # Currently, we don't support inplace in dygraph mode
973
        return self._helper.append_activation(pre_activation, act=self._act)
M
minqiyang 已提交
974 975 976


class BatchNorm(layers.Layer):
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
    """
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift


    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

    Args:
1017
        name_scope(str): The name of this class.
1018 1019 1020 1021
        act(str|None): Activation type, linear|relu|prelu|...
        is_test (bool): A flag indicating whether it is in
            test phrase or not. Default: False
        momentum(float): The value used for the moving_mean and
1022 1023 1024 1025
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
1026
        epsilon(float): A value added to the denominator for
1027 1028 1029 1030 1031 1032 1033 1034 1035
            numerical stability. Default is 1e-5.
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1036 1037 1038
        data_layout(string): NCHW|NHWC. Default: NCHW
        in_place(bool): Make the input and output of batch norm reuse memory. Default: False
        moving_mean_name(string|None): The name of moving_mean which store the global Mean. Default: None
1039 1040
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
1041 1042
        fuse_with_relu (bool): if True, this OP performs relu after batch norm. Default: False
        use_global_stats(bool): Whether to use global mean and
1043 1044 1045
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
1046 1047 1048
            and variance are also used during train period. Default: False
        trainable_statistics(bool): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.Default: False
1049 1050 1051 1052 1053 1054

    Returns:
        Variable: A tensor variable which is the result after applying batch normalization on the input.

    Examples:
        .. code-block:: python
1055

1056 1057 1058 1059 1060 1061 1062
          import paddle.fluid as fluid

          with fluid.dygraph.guard():
              fc = fluid.FC('fc', size=200, param_attr='fc1.w')
              hidden1 = fc(x)
              batch_norm = fluid.BatchNorm("batch_norm", 10)
              hidden2 = batch_norm(hidden1)
1063 1064
    """

M
minqiyang 已提交
1065
    def __init__(self,
X
Xin Pan 已提交
1066
                 name_scope,
M
minqiyang 已提交
1067 1068 1069 1070 1071 1072 1073
                 num_channels,
                 act=None,
                 is_test=False,
                 momentum=0.9,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
1074
                 dtype='float32',
M
minqiyang 已提交
1075 1076 1077 1078 1079 1080
                 data_layout='NCHW',
                 in_place=False,
                 moving_mean_name=None,
                 moving_variance_name=None,
                 do_model_average_for_mean_and_var=False,
                 fuse_with_relu=False,
1081 1082
                 use_global_stats=False,
                 trainable_statistics=False):
1083
        super(BatchNorm, self).__init__(name_scope, dtype)
1084
        self._param_attr = param_attr
1085
        self._bias_attr = bias_attr
1086
        self._act = act
M
minqiyang 已提交
1087 1088 1089

        assert bias_attr is not False, "bias_attr should not be False in batch_norm."

1090 1091
        if dtype == "float16":
            self._dtype = "float32"
M
minqiyang 已提交
1092 1093 1094 1095 1096 1097
        else:
            self._dtype = dtype

        param_shape = [num_channels]

        # create parameter
1098 1099
        self._scale = self.create_parameter(
            attr=self._param_attr,
M
minqiyang 已提交
1100 1101 1102
            shape=param_shape,
            dtype=self._dtype,
            default_initializer=Constant(1.0))
1103
        if use_global_stats and self._param_attr.learning_rate == 0.:
1104
            self._scale.stop_gradient = True
M
minqiyang 已提交
1105

1106
        self._bias = self.create_parameter(
1107
            attr=self._bias_attr,
M
minqiyang 已提交
1108 1109 1110
            shape=param_shape,
            dtype=self._dtype,
            is_bias=True)
1111
        if use_global_stats and self._param_attr.learning_rate == 0.:
1112
            self._bias.stop_gradient = True
M
minqiyang 已提交
1113

1114
        self._mean = self.create_parameter(
M
minqiyang 已提交
1115 1116 1117 1118 1119 1120 1121
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1122
        self._mean.stop_gradient = True
M
minqiyang 已提交
1123

1124
        self._variance = self.create_parameter(
M
minqiyang 已提交
1125 1126 1127 1128 1129 1130 1131
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=do_model_average_for_mean_and_var),
            shape=param_shape,
            dtype=self._dtype)
1132
        self._variance.stop_gradient = True
M
minqiyang 已提交
1133 1134 1135 1136 1137 1138 1139

        self._in_place = in_place
        self._momentum = momentum
        self._epsilon = epsilon
        self._is_test = is_test
        self._fuse_with_relu = fuse_with_relu
        self._use_global_stats = use_global_stats
1140
        self._trainable_statistics = trainable_statistics
M
minqiyang 已提交
1141

1142
    def _build_once(self, input):
M
minqiyang 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
        pass

    def forward(self, input):
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

        saved_mean = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1153
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1154
        saved_variance = self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1155
            dtype=self._dtype, stop_gradient=True)
M
minqiyang 已提交
1156
        batch_norm_out = input if self._in_place else self._helper.create_variable_for_type_inference(
M
minqiyang 已提交
1157
            self._dtype)
M
minqiyang 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

        self._helper.append_op(
            type="batch_norm",
            inputs={
                "X": input,
                "Scale": self._scale,
                "Bias": self._bias,
                "Mean": self._mean,
                "Variance": self._variance
            },
            outputs={
                "Y": batch_norm_out,
                "MeanOut": mean_out,
                "VarianceOut": variance_out,
                "SavedMean": saved_mean,
                "SavedVariance": saved_variance
            },
            attrs={
                "momentum": self._momentum,
                "epsilon": self._epsilon,
                "is_test": self._is_test,
                "use_mkldnn": False,
                "fuse_with_relu": self._fuse_with_relu,
1181 1182
                "use_global_stats": self._use_global_stats,
                "trainable_statistics": self._trainable_statistics
M
minqiyang 已提交
1183 1184
            })

L
lujun 已提交
1185
        # Currently, we don't support inplace in dygraph mode
1186
        return self._helper.append_activation(batch_norm_out, self._act)
1187 1188


1189 1190 1191 1192 1193 1194 1195
class Embedding(layers.Layer):
    """
    **Embedding Layer**

    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
1196
    All the input variables are passed in as local variables to the LayerHelper constructor
1197 1198

    Args:
1199
        name_scope(str): The name of this class.
1200 1201
        size(tuple|list): The shape of the look up table parameter. It should have two elements which indicate the size
            of the dictionary of embeddings and the size of each embedding vector respectively.
1202 1203
        is_sparse(bool): The flag indicating whether to use sparse update. Default: False
        is_distributed(bool): Whether to run lookup table from remote parameter server. Default: False.
1204 1205
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output with zeros whenever lookup encounters
1206 1207 1208
            it in :attr:`input`. If :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is :math:`size[0] + dim`. Default: None.
        param_attr(ParamAttr): Parameters for this layer. Default: None.
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc. Default: 'float32'.
1209 1210 1211 1212 1213 1214

    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.

    Examples:
1215

1216 1217
        .. code-block:: python

1218 1219 1220 1221
          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy as np

1222 1223 1224
          inp_word = np.array([[[1]]]).astype('int64')
          dict_size = 20
          with fluid.dygraph.guard():
1225
              emb = fluid.dygraph.Embedding(
1226 1227 1228 1229
                  name_scope='embedding',
                  size=[dict_size, 32],
                  param_attr='emb.w',
                  is_sparse=False)
1230
              static_rlt3 = emb(base.to_variable(inp_word))
1231 1232
    """

1233
    def __init__(self,
X
Xin Pan 已提交
1234
                 name_scope,
1235 1236 1237 1238 1239 1240
                 size,
                 is_sparse=False,
                 is_distributed=False,
                 padding_idx=None,
                 param_attr=None,
                 dtype='float32'):
1241
        super(Embedding, self).__init__(name_scope, dtype)
1242 1243 1244 1245
        self._size = size
        self._is_sparse = is_sparse
        self._is_distributed = is_distributed
        self._padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
J
JiabinYang 已提交
1246
            size[0] + padding_idx)
1247 1248 1249

        self._param_attr = param_attr
        self._dtype = dtype
J
JiabinYang 已提交
1250
        self._remote_prefetch = self._is_sparse and (not self._is_distributed)
1251 1252 1253
        if self._remote_prefetch:
            assert self._is_sparse is True and self._is_distributed is False

1254
        self._w = self.create_parameter(
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
            attr=self._param_attr,
            shape=self._size,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='lookup_table',
            inputs={'Ids': input,
                    'W': self._w},
            outputs={'Out': out},
            attrs={
                'is_sparse': self._is_sparse,
                'is_distributed': self._is_distributed,
                'remote_prefetch': self._remote_prefetch,
                'padding_idx': self._padding_idx
            })

        return out
M
minqiyang 已提交
1275 1276


1277
class LayerNorm(layers.Layer):
1278
    """
L
lujun 已提交
1279 1280 1281 1282 1283 1284 1285
    Assume feature vectors exist on dimensions
    `begin_norm_axis ... rank(input)` and calculate the moment statistics along these dimensions for each feature
    vector `a` with size `H`, then normalize each feature vector using the corresponding
    statistics. After that, apply learnable gain and bias on the normalized
    tensor to scale and shift if `scale` and `shift` are set.

    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_
1286

1287
    The formula is as follows:
1288

1289
    ..  math::
1290

1291
        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i
1292

1293
        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}
1294

1295
        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)
1296

1297 1298
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.
1299

1300
    * :math:`H`: the number of hidden units in a layers
1301

1302
    * :math:`g`: the trainable scale parameter.
1303

1304
    * :math:`b`: the trainable bias parameter.
1305

1306
    Args:
1307
        name_scope(str): The name of this class.
1308
        scale(bool): Whether to learn the adaptive gain :math:`g` after
1309
            normalization. Default: True.
1310
        shift(bool): Whether to learn the adaptive bias :math:`b` after
1311
            normalization. Default: True.
1312 1313
        begin_norm_axis(int): The normalization will be performed along
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
1314
            Default: 1.
1315
        epsilon(float): The small value added to the variance to prevent
1316
            division by zero. Default: 1e-05.
1317 1318 1319 1320
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as scale. The
1321
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
1322 1323 1324 1325
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
            a default :code:`ParamAttr` would be added as bias. The
1326
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
1327
        act(str): Activation to be applied to the output of layer normalizaiton.
1328
                  Default: None.
1329
    Returns:
L
lujun 已提交
1330
        Result after normalization
1331

1332
    Examples:
1333

L
lujun 已提交
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
              layerNorm = fluid.dygraph.nn.LayerNorm(
                    'LayerNorm', begin_norm_axis=1)
             ret = layerNorm(fluid.dygraph.base.to_variable(x))

1345
    """
1346

1347 1348 1349 1350 1351 1352 1353 1354 1355
    def __init__(self,
                 name_scope,
                 scale=True,
                 shift=True,
                 begin_norm_axis=1,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None):
1356 1357 1358 1359 1360 1361 1362 1363 1364
        super(LayerNorm, self).__init__(name_scope)
        self._scale = scale
        self._shift = shift
        self._begin_norm_axis = begin_norm_axis
        self._epsilon = epsilon
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act

1365
    def _build_once(self, input):
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
        self._dtype = self._helper.input_dtype(input)
        input_shape = input.shape
        param_shape = [
            reduce(lambda x, y: x * y, input_shape[self._begin_norm_axis:])
        ]
        if self._scale:
            self._scale_w = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))
        if self._shift:
            assert self._bias_attr is not False
            self._bias_w = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)

    def forward(self, input):
        inputs = dict()
        inputs['X'] = input
        if self._scale:
            inputs['Scale'] = self._scale_w
        if self._shift:
            inputs['Bias'] = self._bias_w
        # create output
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        layer_norm_out = self._helper.create_variable_for_type_inference(
            self._dtype)

        self._helper.append_op(
            type="layer_norm",
            inputs=inputs,
            outputs={
                "Y": layer_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={
                "epsilon": self._epsilon,
                "begin_norm_axis": self._begin_norm_axis
            })

        return self._helper.append_activation(layer_norm_out)


M
minqiyang 已提交
1416 1417 1418 1419 1420 1421
class GRUUnit(layers.Layer):
    """
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1422
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`
M
minqiyang 已提交
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)


    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.

    Args:
1460 1461
        name_scope(str): The name of this class.
        size (int): The input dimension value.
M
minqiyang 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
            the bias in the update gate, reset gate and candidate calculations.
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1483
        activation (str): The activation type for cell (actNode).
M
minqiyang 已提交
1484
                             Default: 'tanh'
1485
        gate_activation (str): The activation type for gates (actGate).
M
minqiyang 已提交
1486
                                  Default: 'sigmoid'
1487
        dtype(str): The dtype of the layers. Default: 'float32'
M
minqiyang 已提交
1488 1489 1490

    Returns:
        tuple: The hidden value, reset-hidden value and gate values.
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510

    Examples:

        .. code-block:: python

          import paddle.fluid as fluid
          import paddle.fluid.dygraph.base as base
          import numpy

          lod = [[2, 4, 3]]
          D = 5
          T = sum(lod[0])

          hidden_input = numpy.random.rand(T, D).astype('float32')
          with fluid.dygraph.guard():
              x = numpy.random.random((3, 32, 32)).astype('float32')
              gru = fluid.dygraph.GRUUnit('gru', size=D * 3)
              dy_ret = gru(
                base.to_variable(input), base.to_variable(hidden_input))

M
minqiyang 已提交
1511 1512 1513
    """

    def __init__(self,
M
minqiyang 已提交
1514
                 name_scope,
M
minqiyang 已提交
1515 1516 1517 1518 1519 1520 1521
                 size,
                 param_attr=None,
                 bias_attr=None,
                 activation='tanh',
                 gate_activation='sigmoid',
                 origin_mode=False,
                 dtype='float32'):
1522
        super(GRUUnit, self).__init__(name_scope, dtype)
M
minqiyang 已提交
1523 1524 1525 1526 1527 1528

        activation_dict = dict(
            identity=0,
            sigmoid=1,
            tanh=2,
            relu=3, )
H
Hongyu Liu 已提交
1529 1530
        self.activation = activation_dict[activation]
        self.gate_activation = activation_dict[gate_activation]
M
minqiyang 已提交
1531

M
minqiyang 已提交
1532
        self._dtype = dtype
M
minqiyang 已提交
1533 1534
        size = size // 3
        # create weight
M
minqiyang 已提交
1535 1536
        self._weight = self.create_parameter(
            attr=param_attr, shape=[size, 3 * size], dtype=dtype)
M
minqiyang 已提交
1537 1538

        # create bias
M
minqiyang 已提交
1539 1540 1541
        bias_size = [1, 3 * size]
        self._bias = self.create_parameter(
            attr=bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
M
minqiyang 已提交
1542

M
minqiyang 已提交
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552
    def forward(self, input, hidden):
        inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': self._weight}
        if self._bias:
            inputs['Bias'] = self._bias

        gate = self._helper.create_variable_for_type_inference(self._dtype)
        reset_hidden_pre = self._helper.create_variable_for_type_inference(
            self._dtype)
        updated_hidden = self._helper.create_variable_for_type_inference(
            self._dtype)
M
minqiyang 已提交
1553 1554 1555 1556 1557 1558 1559 1560 1561
        self._helper.append_op(
            type='gru_unit',
            inputs=inputs,
            outputs={
                'Gate': gate,
                'ResetHiddenPrev': reset_hidden_pre,
                'Hidden': updated_hidden,
            },
            attrs={
H
Hongyu Liu 已提交
1562 1563
                'activation': self.activation,
                'gate_activation': self.gate_activation,
M
minqiyang 已提交
1564 1565 1566
            })

        return updated_hidden, reset_hidden_pre, gate
1567 1568 1569 1570


class NCE(layers.Layer):
    """
1571 1572 1573
    Compute and return the noise-contrastive estimation training loss. See
    `Noise-contrastive estimation: A new estimation principle for unnormalized
    statistical models
1574
     <http://www.jmlr.org/proceedings/papers/v9/gutmann10a/gutmann10a.pdf>`.
1575
    By default this operator uses a uniform distribution for sampling.
1576 1577

    Args:
1578
        name_scope(str): The name of this class.
1579
        num_total_classes (int): Total number of classes in all samples
1580 1581 1582 1583 1584 1585 1586 1587 1588
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
1589
        num_neg_samples (int): The number of negative classes. The default value is 10.
1590 1591 1592
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
1593
        custom_dist (float[]|None): A float[] with size=num_total_classes.
1594 1595
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
1596 1597 1598
                       Default: None.
        seed (int): The seed used in sampler. Default: 0.
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows. Default: False.
1599 1600 1601 1602 1603 1604 1605

    Returns:
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

1606 1607 1608
            import numpy as np
            import paddle.fluid as fluid

1609
            window_size = 5
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
            dict_size = 20
            label_word = int(window_size // 2) + 1
            inp_word = np.array([[[1]], [[2]], [[3]], [[4]], [[5]]]).astype('int64')
            nid_freq_arr = np.random.dirichlet(np.ones(20) * 1000).astype('float32')

            with fluid.dygraph.guard():
                words = []
                for i in range(window_size):
                    words.append(fluid.dygraph.base.to_variable(inp_word[i]))

                emb = fluid.Embedding(
                    'embedding',
                    size=[dict_size, 32],
                    param_attr='emb.w',
                    is_sparse=False)

                embs3 = []
                for i in range(window_size):
                    if i == label_word:
                        continue

                    emb_rlt = emb(words[i])
                    embs3.append(emb_rlt)

                embs3 = fluid.layers.concat(input=embs3, axis=1)
                nce = fluid.NCE('nce',
                             num_total_classes=dict_size,
                             num_neg_samples=2,
                             sampler="custom_dist",
                             custom_dist=nid_freq_arr.tolist(),
                             seed=1,
                             param_attr='nce.w',
                             bias_attr='nce.b')

                nce_loss3 = nce(embs3, words[label_word])
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751

    """

    def __init__(self,
                 name_scope,
                 num_total_classes,
                 param_attr=None,
                 bias_attr=None,
                 num_neg_samples=None,
                 sampler="uniform",
                 custom_dist=None,
                 seed=0,
                 is_sparse=False):
        super(NCE, self).__init__(name_scope)
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._num_total_classes = num_total_classes

        self._inputs = dict()

        if sampler == "uniform":
            sampler = 0
        elif sampler == "log_uniform":
            sampler = 1
        elif sampler == "custom_dist":
            assert custom_dist is not None
            # assert isinstance(custom_dist, Variable)

            custom_dist_len = len(custom_dist)
            alias_probs_ = [0] * custom_dist_len
            alias_ = [0] * custom_dist_len
            bigs = []
            littles = []
            for i in range(custom_dist_len):
                normal_prob = custom_dist[i] * custom_dist_len
                if normal_prob - 1.0 > 0:
                    bigs.append((i, normal_prob))
                elif 1.0 - normal_prob > 0:
                    littles.append((i, normal_prob))
                else:
                    alias_probs_[i] = normal_prob
                    alias_[i] = -1

            while len(bigs) and len(littles):
                big = bigs.pop(0)
                little = littles.pop(0)

                big_idx = big[0]
                big_prob = big[1]

                alias_probs_[little[0]] = little[1]
                alias_[little[0]] = big_idx
                big_left = big[1] + little[1] - 1
                if big_left - 1.0 > 0:
                    bigs.append((big_idx, big_left))
                elif 1.0 - big_left > 0:
                    littles.append((big_idx, big_left))
                else:
                    alias_probs_[big_idx] = big_left
                    alias_[big_idx] = -1

            if len(bigs):
                big = bigs.pop(0)
                alias_probs_[big[0]] = 1.0
                alias_[big[0]] = -1
            if len(littles):
                little = littles.pop(0)
                alias_probs_[little[0]] = 1.0
                alias_[little[0]] = -1

            def _init_by_numpy_array(numpy_array):
                ret = self.create_parameter(
                    attr=ParamAttr(),
                    shape=numpy_array.shape,
                    dtype=numpy_array.dtype,
                    default_initializer=NumpyArrayInitializer(numpy_array))
                ret.stop_gradient = True
                return ret

            self._inputs['CustomDistProbs'] = _init_by_numpy_array(
                np.array(custom_dist).astype('float32'))
            self._inputs['CustomDistAlias'] = _init_by_numpy_array(
                np.array(alias_).astype('int32'))
            self._inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
                np.array(alias_probs_).astype('float32'))
            sampler = 2
        else:
            raise Exception("Unsupported sampler type.")

        if num_neg_samples is None:
            num_neg_samples = 10
        else:
            num_neg_samples = int(num_neg_samples)
        self._num_neg_samples = num_neg_samples
        remote_prefetch = is_sparse
        print(
            "With sparse mode, if your models has only small parameter prefetch may cause speed down"
        )
        self._attrs = {
            'num_total_classes': int(num_total_classes),
            'num_neg_samples': num_neg_samples,
            'seed': seed,
            'sampler': sampler,
            'is_sparse': is_sparse,
            'remote_prefetch': remote_prefetch
        }

1752
    def _build_once(self, input, label, sample_weight=None):
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        dim = input.shape[1]
        num_true_class = label.shape[1]
        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=[self._num_total_classes, dim],
            is_bias=False,
            dtype=input.dtype)
        if self._bias_attr:
            self._b = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_total_classes, 1],
                is_bias=True,
                dtype=input.dtype)
            self._inputs['Bias'] = self._b
        self._inputs['Weight'] = self._w

    def forward(self, input, label, sample_weight=None):
        assert isinstance(input, Variable)
        assert isinstance(label, Variable)

        self._inputs['Input'] = input
        self._inputs['Label'] = label
        self._inputs['SampleWeight'] = sample_weight if sample_weight is not None else []

        cost = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_logits = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        sample_labels = self._helper.create_variable_for_type_inference(
            dtype=label.dtype)

        self._helper.append_op(
            type='nce',
            inputs=self._inputs,
            outputs={
                'Cost': cost,
                'SampleLogits': sample_logits,
                'SampleLabels': sample_labels
            },
            attrs=self._attrs)
        return cost / (self._num_neg_samples + 1)


class PRelu(layers.Layer):
    """
    Equation:

    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)

    Args:
1807 1808
        name_scope(str): The name of this class.
        mode (str): The mode for weight sharing. It supports all, channel
1809 1810 1811
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
1812 1813
        param_attr(ParamAttr|None): The parameter attribute for the learnable
          weight (alpha).
1814 1815 1816 1817 1818 1819 1820 1821

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833
          import paddle.fluid as fluid
          import numpy as np

          inp_np = np.ones([5, 200, 100, 100]).astype('float32')
          with fluid.dygraph.guard():
              mode = 'channel'
              prelu = fluid.PRelu(
                 'prelu',
                 mode=mode,
                 param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(1.0)))
              dy_rlt = prelu(fluid.dygraph.base.to_variable(inp_np))

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
    """

    def __init__(self, name_scope, mode, param_attr=None):

        super(PRelu, self).__init__(name_scope)
        self._mode = mode
        self._param_attr = param_attr
        if self._mode not in ['all', 'channel', 'element']:
            raise ValueError('mode should be one of all, channel, element.')
        self._alpha_shape = [1]

1845
    def _build_once(self, input):
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
        if self._mode == 'channel':
            self._alpha_shape = [1, input.shape[1], 1, 1]
        elif self._mode == 'element':
            self._alpha_shape = input.shape
        self._dtype = self._helper.input_dtype(input)
        self._alpha = self.create_parameter(
            attr=self._param_attr,
            shape=self._alpha_shape,
            dtype='float32',
            is_bias=False,
            default_initializer=Constant(1.0))

    def forward(self, input):

        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="prelu",
            inputs={"X": input,
                    'Alpha': self._alpha},
            attrs={"mode": self._mode},
            outputs={"Out": out})
        return out


class BilinearTensorProduct(layers.Layer):
    """
    **Add Bilinear Tensor Product Layer**

    This layer performs bilinear tensor product on two inputs.
    For example:

    .. math::
      out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1

    In this formula:
     - :math:`x`: the first input contains M elements, shape is [batch_size, M].
     - :math:`y`: the second input contains N elements, shape is [batch_size, N].
     - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
     - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
     - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
1888
       name_scope(str): The name of this class.
1889
       size (int): The dimension of this layer.
1890 1891 1892 1893 1894
       act (str): Activation to be applied to the output of this layer. Default: None.
       name (str): The name of this layer. Default: None.
       param_attr (ParamAttr): The parameter attribute for the learnable w.
           parameters/weights of this layer. Default: None.
       bias_attr (ParamAttr): The parameter attribute for the bias
1895 1896 1897 1898 1899 1900 1901 1902 1903
           of this layer. If it is set to False, no bias will be added to the output units.
           If it is set to None, the bias is initialized zero. Default: None.

    Returns:
       Variable: A 2-D Tensor of shape [batch_size, size].

    Examples:
       .. code-block:: python

L
lujun 已提交
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
         import paddle.fluid as fluid
         import numpy

         with fluid.dygraph.guard():
             layer1 = numpy.random.random((5, 5)).astype('float32')
             layer2 = numpy.random.random((5, 4)).astype('float32')
             bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct(
                    'BilinearTensorProduct', size=1000)
             ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1),
                                fluid.dygraph.base.to_variable(layer2))
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
    """

    def __init__(self,
                 name_scope,
                 size,
                 name=None,
                 act=None,
                 param_attr=None,
                 bias_attr=None):
        super(BilinearTensorProduct, self).__init__(name_scope)
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._act = act
        self._size = size
        self._name = name
        self._inputs = dict()

1931
    def _build_once(self, x, y):
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
        self._dtype = self._helper.input_dtype(x)

        param_shape = [self._size, x.shape[1], y.shape[1]]

        self._w = self.create_parameter(
            attr=self._param_attr,
            shape=param_shape,
            dtype=self._dtype,
            is_bias=False)

        if self._bias_attr:
            bias_size = [1, self._size]
            bias = self.create_parameter(
                attr=self._bias_attr,
                shape=bias_size,
                dtype=self._dtype,
                is_bias=True)
            self._inputs["Bias"] = bias

    def forward(self, x, y):
        self._inputs = {"X": x, "Y": y, "Weight": self._w}
        if self._name is not None:
            out = self._helper.create_variable(
                name=".".join([self.full_name(), self._name]),
                dtype=self._dtype,
                persistable=False)
        else:
            out = self._helper.create_variable(
                dtype=self._dtype, persistable=False)
        self._helper.append_op(
            type="bilinear_tensor_product",
            inputs=self._inputs,
            outputs={"Out": out})

        # add activation
        return self._helper.append_activation(out)


class Conv2DTranspose(layers.Layer):
    """
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    Where:

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`

        - Output:

          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`

        Where

        .. math::

           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )

    Args:
2023
        name_scope(str): The name of this class.
2024 2025 2026 2027 2028 2029
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
2030
            should follow the formula above. Default: None.
2031 2032 2033
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
2034
            calculate filter_size. Default: None.
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

    Returns:
        Variable: The tensor variable storing the convolution transpose result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
       .. code-block:: python

L
lujun 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082
          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              data = numpy.random.random((3, 32, 32)).astype('float32')
              conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose(
                    'Conv2DTranspose', num_filters=2, filter_size=3)
              ret = conv2DTranspose(fluid.dygraph.base.to_variable(data))

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 output_size=None,
                 filter_size=None,
                 padding=0,
                 stride=1,
                 dilation=1,
                 groups=None,
                 param_attr=None,
                 bias_attr=None,
                 use_cudnn=True,
                 act=None):
        super(Conv2DTranspose, self).__init__(name_scope)
        assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._groups = groups
        self._num_filters = num_filters
        self._use_cudnn = use_cudnn
        self._padding = padding
        self._stride = stride
        self._dilation = dilation
        self._filter_size = filter_size
        self._output_size = output_size
        self._op_type = 'conv2d_transpose'

2112
    def _build_once(self, input):
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
        input_channel = input.shape[1]
        if (input_channel == self._groups and
                self._num_filters == input_channel and not self._use_cudnn):
            self._op_type = 'depthwise_conv2d_transpose'

        if not isinstance(input, Variable):
            raise TypeError("Input of conv2d_transpose must be Variable")

        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._stride = utils.convert_to_list(self._stride, 2, 'stride')
        self._dilation = utils.convert_to_list(self._dilation, 2, 'dilation')

        if not isinstance(self._use_cudnn, bool):
            raise ValueError("use_cudnn should be True or False")

        if self._filter_size is None:
            if self._output_size is None:
                raise ValueError(
                    "output_size must be set when filter_size is None")
            if isinstance(self._output_size, int):
                self._output_size = [self._output_size, self._output_size]

            h_in = input.shape[2]
            w_in = input.shape[3]

            filter_size_h = (self._output_size[0] -
                             (h_in - 1) * self._stride[0] + 2 * self._padding[0]
                             - 1) // self._dilation[0] + 1
            filter_size_w = (self._output_size[1] -
                             (w_in - 1) * self._stride[1] + 2 * self._padding[1]
                             - 1) // self._dilation[1] + 1
            self._filter_size = [filter_size_h, filter_size_w]
        else:
            self._filter_size = utils.convert_to_list(
H
Hongyu Liu 已提交
2147
                self._filter_size, 2, 'conv2d_transpose.filter_size')
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193

        if self._output_size is None:
            self._output_size = []
        elif isinstance(self._output_size, list) or isinstance(
                self._output_size, int):
            self._output_size = utils.convert_to_list(self._output_size, 2,
                                                      'output_size')
        else:
            raise ValueError("output_size should be list or int")
        self._padding = utils.convert_to_list(self._padding, 2, 'padding')
        self._groups = 1 if self._groups is None else self._groups
        filter_shape = [input_channel, self._num_filters // self._groups
                        ] + self._filter_size

        self._img_filter = self.create_parameter(
            dtype=input.dtype, shape=filter_shape, attr=self._param_attr)

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(
            dtype=input.dtype)
        self._helper.append_op(
            type=self._op_type,
            inputs={'Input': [input],
                    'Filter': [self._img_filter]},
            outputs={'Output': pre_bias},
            attrs={
                'output_size': self._output_size,
                'strides': self._stride,
                'paddings': self._padding,
                'dilations': self._dilation,
                'groups': self._groups,
                'use_cudnn': self._use_cudnn
            })

        pre_act = self._helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
        out = self._helper.append_activation(pre_act)
        return out


class SequenceConv(layers.Layer):
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.

    Args:
2194
        name_scope(str): The name of this class.
2195
        num_filters (int): number of filters.
2196 2197 2198
        filter_size (int): the filter size (H and W). Default: 3.
        filter_stride (int): stride of the filter. Default: 1.
        padding (bool|None): if True, add paddings. Default: None
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.

    Returns:
        Variable: output of sequence_conv
    """

    def __init__(self,
                 name_scope,
                 num_filters,
                 filter_size=3,
                 filter_stride=1,
                 padding=None,
                 bias_attr=None,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2224
        assert not in_dygraph_mode(
2225
        ), "SequenceConv is not supported by dynamic graph mode yet!"
2226 2227 2228 2229 2230 2231 2232 2233
        super(SequenceConv, self).__init__(name_scope)
        self._num_filters = num_filters
        self._filter_size = filter_size
        self._filter_stride = filter_stride
        self._padding = padding
        self._bias_attr = bias_attr
        self._param_attr = param_attr

2234
    def _build_once(self, input):
2235 2236 2237
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._filter_size * input.shape[1], self._num_filters]
        self._filter_param = self.create_parameter(
2238
            attr=self._param_attr, shape=filter_shape, dtype=self._dtype)
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255

    def forward(self, input):
        pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='sequence_conv',
            inputs={
                'X': [input],
                'Filter': [self._filter_param],
            },
            outputs={"Out": pre_bias},
            attrs={
                'contextStride': self._filter_stride,
                'contextStart': -int(self._filter_size // 2),
                'contextLength': self._filter_size
            })
        pre_act = self._helper.append_bias_op(pre_bias)
        return self._helper.append_activation(pre_act)
L
lujun 已提交
2256 2257 2258


class RowConv(layers.Layer):
L
lujun 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
    """
    ***Row-convolution operator***

    The row convolution is called lookahead convolution.  This operator was introduced in the following paper for DeepSpeech2:
    http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf

    The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a
    forward and a backward pass through the entire sequence. However, unlike
    unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online
    and low-latency setting. The lookahead convolution incorporates information
    from future subsequences in a computationally efficient manner to improve
    unidirectional recurrent neural networks. The row convolution operator is
    different from the 1D sequence convolution, and is computed as follows:

    Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D.

    More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .

    Args:
2278
        name_scope(str): The name of this class.
L
lujun 已提交
2279 2280 2281
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
        param_attr (ParamAttr): Attributes of parameters, including
2282 2283
            name, initializer etc. Default: None.
        act (str): Non-linear activation to be applied to output variable. Default: None.
L
lujun 已提交
2284 2285

    Returns:
2286 2287
        the output(Out) is a LodTensor, which supports variable time-length input sequences.
        The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
L
lujun 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          import numpy

          with fluid.dygraph.guard():
              x = numpy.random.random((16)).astype('float32')
              rowConv = fluid.dygraph.nn.RowConv(
                    'RowConv', future_context_size=2)
              ret = rowConv(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2303 2304 2305 2306 2307
    def __init__(self,
                 name_scope,
                 future_context_size,
                 param_attr=None,
                 act=None):
L
lujun 已提交
2308
        assert not in_dygraph_mode(
2309
        ), "RowConv is not supported by dynamic graph mode yet!"
L
lujun 已提交
2310 2311 2312 2313 2314
        super(RowConv, self).__init__(name_scope)
        self._act = act
        self._param_attr = param_attr
        self._future_context_size = future_context_size

2315
    def _build_once(self, input):
L
lujun 已提交
2316 2317
        self._dtype = self._helper.input_dtype(input)
        filter_shape = [self._future_context_size + 1, input.shape[1]]
2318 2319 2320 2321 2322
        self._filter_param = self.create_parameter(
            attr=self._param_attr,
            shape=filter_shape,
            dtype=self._dtype,
            is_bias=False)
L
lujun 已提交
2323 2324 2325 2326 2327 2328

    def forward(self, input):
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type='row_conv',
            inputs={'X': [input],
2329
                    'Filter': [self._filter_param]},
L
lujun 已提交
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
            outputs={'Out': [out]})
        return self._helper.append_activation(out, act=self._act)


class GroupNorm(layers.Layer):
    """
        **Group Normalization Layer**

        Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

        Args:
2341
            name_scope(str): The name of this class.
L
lujun 已提交
2342 2343
            groups(int): The number of groups that divided from channels.
            epsilon(float): The small value added to the variance to prevent
2344
                division by zero. Default: 1e-05.
L
lujun 已提交
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
            param_attr(ParamAttr|None): The parameter attribute for the learnable
                scale :math:`g`. If it is set to False, no scale will be added to the output units.
                If it is set to None, the bias is initialized one. Default: None.
            bias_attr(ParamAttr|None): The parameter attribute for the learnable
                bias :math:`b`. If it is set to False, no bias will be added to the output units.
                If it is set to None, the bias is initialized zero. Default: None.
            act(str): Activation to be applied to the output of group normalizaiton.
            data_layout(string|NCHW): Only NCHW is supported.

        Returns:
            Variable: A tensor variable which is the result after applying group normalization on the input.

L
lujun 已提交
2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
        Examples:
            .. code-block:: python

              import paddle.fluid as fluid
              import numpy

              with fluid.dygraph.guard():
                  x = numpy.random.random((8, 32, 32)).astype('float32')
                  groupNorm = fluid.dygraph.nn.GroupNorm('GroupNorm', groups=4)
                  ret = groupNorm(fluid.dygraph.base.to_variable(x))
L
lujun 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386

    """

    def __init__(self,
                 name_scope,
                 groups,
                 epsilon=1e-05,
                 param_attr=None,
                 bias_attr=None,
                 act=None,
                 data_layout='NCHW'):
        super(GroupNorm, self).__init__(name_scope)
        self._param_attr = param_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._groups = groups
        self._act = act
        if data_layout != 'NCHW':
            raise ValueError("unsupported data layout:" + data_layout)

2387
    def _build_once(self, input):
L
lujun 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
        self._dtype = self._helper.input_dtype(input)
        param_shape = [input.shape[1]]
        if self._bias_attr:
            self._bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True)

        if self._param_attr:
            self._scale = self.create_parameter(
                attr=self._param_attr,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(1.0))

    def forward(self, input):
        inputs = {'X': input}
        if self._bias:
            inputs['Bias'] = self._bias
        if self._scale:
            inputs['Scale'] = self._scale

        # create output
2412
        mean_out = self._helper.create_variable_for_type_inference(
L
lujun 已提交
2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
            dtype=self._dtype, stop_gradient=True)
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype, stop_gradient=True)
        group_norm_out = self._helper.create_variable_for_type_inference(
            dtype=self._dtype)

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon,
                   "groups": self._groups})

        return self._helper.append_activation(group_norm_out, self._act)


class SpectralNorm(layers.Layer):
L
lujun 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
    """
    **Spectral Normalization Layer**

    This layer calculates the spectral normalization value of weight parameters of
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
    Parameters. Calculations are showed as follows.

    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
    and W is the product result of remaining dimensions.

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math::

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}

        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}


    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
2469 2470 2471 2472
        name_scope(str): The name of this class.
        dim(int): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
        power_iters(int): The number of power iterations to calculate spectral norm. Default: 1.
        eps(float): The epsilon for numerical stability in calculating norms. Default: 1e-12.
L
lujun 已提交
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable of weight parameters after spectral normalization.

    Examples:
       .. code-block:: python

            import paddle.fluid as fluid
            import numpy

            with fluid.dygraph.guard():
                x = numpy.random.random((2, 8, 32, 32)).astype('float32')
                spectralNorm = fluid.dygraph.nn.SpectralNorm('SpectralNorm', dim=1, power_iters=2)
                ret = spectralNorm(fluid.dygraph.base.to_variable(x))

    """

L
lujun 已提交
2491 2492 2493 2494 2495 2496
    def __init__(self, name_scope, dim=0, power_iters=1, eps=1e-12, name=None):
        super(SpectralNorm, self).__init__(name_scope)
        self._power_iters = power_iters
        self._eps = eps
        self._dim = dim

2497
    def _build_once(self, weight):
L
lujun 已提交
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
        self._dtype = self._helper.input_dtype(weight)
        input_shape = weight.shape
        h = input_shape[self._dim]
        w = np.prod(input_shape) // h

        self.u = self.create_parameter(
            attr=ParamAttr(),
            shape=[h],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.u.stop_gradient = True

        self.v = self.create_parameter(
            attr=ParamAttr(),
            shape=[w],
            dtype=self._dtype,
            default_initializer=Normal(0., 1.))
        self.v.stop_gradient = True

    def forward(self, weight):
        inputs = {'Weight': weight, 'U': self.u, 'V': self.v}
        out = self._helper.create_variable_for_type_inference(self._dtype)
        self._helper.append_op(
            type="spectral_norm",
            inputs=inputs,
            outputs={"Out": out, },
            attrs={
                "dim": self._dim,
                "power_iters": self._power_iters,
                "eps": self._eps,
            })

        return out


class TreeConv(layers.Layer):
L
lujun 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
    """
        ***Tree-Based Convolution Operator***

        Tree-Based Convolution is a kind of convolution based on tree structure.
        Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN),
        which is used to classify tree structures, such as Abstract Syntax Tree.
        Tree-Based Convolution proposed a kind of data structure called continuous binary tree,
        which regards multiway tree as binary tree.
        The paper of Tree-Based Convolution Operator is here: https://arxiv.org/abs/1409.5718v1


        Args:
2546
            name_scope(str): The name of this class.
L
lujun 已提交
2547
            output_size(int): output feature width
2548 2549 2550 2551 2552 2553
            num_filters(int): number of filters, Default: 1.
            max_depth(int): max depth of filters, Default: 2.
            act(str): activation function, Default: tanh.
            param_attr(ParamAttr): the parameter attribute for the filters, Default: None.
            bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default: None.
            name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default: None.
L
lujun 已提交
2554 2555 2556 2557 2558

        Returns:
            out(Variable): (Tensor) The feature vector of subtrees. The shape of the output tensor is [max_tree_node_size, output_size, num_filters]. The output tensor could be a new feature vector for next tree convolution layers

        Examples:
2559

L
lujun 已提交
2560
            .. code-block:: python
2561

L
lujun 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
              import paddle.fluid as fluid
              import numpy

              with fluid.dygraph.guard():
                  nodes_vector = numpy.random.random((1, 10, 5)).astype('float32')
                  edge_set = numpy.random.random((1, 9, 2)).astype('int32')
                  treeConv = fluid.dygraph.nn.TreeConv(
                    'TreeConv', output_size=6, num_filters=1, max_depth=2)
                  ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set))

    """

L
lujun 已提交
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
    def __init__(self,
                 name_scope,
                 output_size,
                 num_filters=1,
                 max_depth=2,
                 act='tanh',
                 param_attr=None,
                 bias_attr=None,
                 name=None):
        super(TreeConv, self).__init__(name_scope)
        self._name = name
        self._output_size = output_size
        self._act = act
        self._max_depth = max_depth
        self._num_filters = num_filters
        self._bias_attr = bias_attr
        self._param_attr = param_attr

2592
    def _build_once(self, nodes_vector, edge_set):
L
lujun 已提交
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
        assert isinstance(nodes_vector, Variable)
        assert isinstance(edge_set, Variable)
        self._dtype = self._helper.input_dtype(nodes_vector)

        feature_size = nodes_vector.shape[2]
        w_shape = [feature_size, 3, self._output_size, self._num_filters]
        if self._bias_attr:
            self._bias_param = self.create_parameter(
                attr=self._bias_attr,
                shape=[self._num_filters],
                dtype=self._dtype,
                is_bias=True)
        self.W = self.create_parameter(
            attr=self._param_attr,
            shape=w_shape,
            dtype=self._dtype,
            is_bias=False)

    def forward(self, nodes_vector, edge_set):
2612

L
lujun 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
        if self._name:
            out = self.create_variable(
                name=self._name, dtype=self._dtype, persistable=False)
        else:
            out = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)

        self._helper.append_op(
            type='tree_conv',
            inputs={
                'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': self.W
            },
            outputs={'Out': out, },
            attrs={'max_depth': self._max_depth})
        if self._bias_attr:
            pre_activation = self._helper.create_variable_for_type_inference(
                dtype=self._dtype)
            self._helper.append_op(
                type='elementwise_add',
                inputs={'X': [out],
                        'Y': [self._bias_param]},
                outputs={'Out': [pre_activation]},
                attrs={'axis': 1})
        else:
            pre_activation = out
        return self._helper.append_activation(pre_activation, act=self._act)