trainer_desc.py 9.6 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Defination of trainers."""
15

H
hutuxian 已提交
16 17
import sys
from os import path
H
hutuxian 已提交
18
__all__ = ['TrainerDesc', 'MultiTrainer', 'DistMultiTrainer', 'PipelineTrainer']
19 20 21


class TrainerDesc(object):
T
Thunderbrook 已提交
22 23 24 25 26
    '''
    Set proto from python to c++.
    Can be initialized from train_desc.
    '''

27 28 29 30 31 32
    def __init__(self):
        '''
        self.proto_desc = data_feed_pb2.DataFeedDesc()
        with open(proto_file, 'r') as f:
            text_format.Parse(f.read(), self.proto_desc)
        '''
H
hutuxian 已提交
33 34 35 36 37
        # Workaround for relative import in protobuf under python3
        # TODO: should be fixed
        cur_path = path.dirname(__file__)
        sys.path.append(cur_path)
        sys.path.append(cur_path + "/proto")
38
        from proto import trainer_desc_pb2
39
        self.proto_desc = trainer_desc_pb2.TrainerDesc()
D
dongdaxiang 已提交
40 41 42
        import multiprocessing as mp
        # set default thread num == cpu count
        self.proto_desc.thread_num = mp.cpu_count()
D
dongdaxiang 已提交
43 44 45 46
        self._fleet_desc = None
        self._device_worker = None
        self._program = None
        self._infer = False
47

48
    def _set_fetch_var_and_info(self, fetch_vars, fetch_info, print_period):
D
dongdaxiang 已提交
49 50 51 52 53
        for i, v in enumerate(fetch_vars):
            self.proto_desc.fetch_config.fetch_var_names.extend([v.name])
            self.proto_desc.fetch_config.fetch_var_str_format.extend(
                [fetch_info[i]])
        self.proto_desc.fetch_config.print_period = print_period
D
dongdaxiang 已提交
54

55
    def _set_debug(self, debug):
56 57
        self.proto_desc.debug = debug

58
    def _set_thread(self, thread_num):
59 60
        self.proto_desc.thread_num = thread_num

61
    def _set_device_worker(self, device_worker):
D
dongdaxiang 已提交
62
        self._device_worker = device_worker
63

64
    def _set_infer(self, infer):
D
dongdaxiang 已提交
65
        self._infer = infer
66

67
    def _set_fleet_desc(self, fleet_desc):
D
dongdaxiang 已提交
68
        self._fleet_desc = fleet_desc
69

70
    def _gen_trainer_desc(self):
71 72
        pass

73
    def _set_program(self, program):
D
dongdaxiang 已提交
74
        self._program = program
D
dongdaxiang 已提交
75

76 77 78
    def _set_use_cvm(self, use_cvm=False):
        self.proto_desc.use_cvm = use_cvm

79 80 81
    def _set_scale_datanorm(self, scale_datanorm=-1):
        self.proto_desc.scale_datanorm = scale_datanorm

T
Thunderbrook 已提交
82 83 84
    def _set_dump_slot(self, dump_slot):
        self.proto_desc.dump_slot = dump_slot

85 86 87
    def _set_mpi_rank(self, mpi_rank):
        self.proto_desc.mpi_rank = mpi_rank

88 89 90
    def _set_mpi_size(self, mpi_size):
        self.proto_desc.mpi_size = mpi_size

91 92 93 94 95 96 97
    def _set_dump_fields(self, dump_fields):
        for field in dump_fields:
            self.proto_desc.dump_fields.append(field)

    def _set_dump_fields_path(self, path):
        self.proto_desc.dump_fields_path = path

98 99 100
    def _set_dump_file_num(self, dump_file_num):
        self.proto_desc.dump_file_num = dump_file_num

101 102 103
    def _set_dump_converter(self, converter):
        self.proto_desc.dump_converter = converter

104 105 106 107
    def _set_check_nan_var_names(self, check_nan_var_names):
        for var in check_nan_var_names:
            self.proto_desc.check_nan_var_names.append(var)

108 109 110 111 112 113 114 115 116 117 118 119
    def _set_adjust_ins_weight(self, config_dict):
        self.proto_desc.adjust_ins_weight_config.need_adjust = \
                config_dict.get("need_adjust", False)
        self.proto_desc.adjust_ins_weight_config.nid_slot = \
                config_dict.get("nid_slot", "")
        self.proto_desc.adjust_ins_weight_config.nid_adjw_threshold = \
                config_dict.get("nid_adjw_threshold", 0.0)
        self.proto_desc.adjust_ins_weight_config.nid_adjw_ratio = \
                config_dict.get("nid_adjw_ratio", 0.0)
        self.proto_desc.adjust_ins_weight_config.ins_weight_slot = \
                config_dict.get("ins_weight_slot", "")

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    def _set_copy_table_config(self, config_dict):
        config = self.proto_desc.copy_table_config
        config.need_copy = config_dict.get("need_copy", False)
        config.batch_num = config_dict.get("batch_num", 100)

        src_sparse_tables = config_dict.get("src_sparse_tables", [])
        if not isinstance(src_sparse_tables, list):
            src_sparse_tables = [src_sparse_tables]
        dest_sparse_tables = config_dict.get("dest_sparse_tables", [])
        if not isinstance(dest_sparse_tables, list):
            dest_sparse_tables = [dest_sparse_tables]
        if len(src_sparse_tables) != len(dest_sparse_tables):
            raise ValueError(
                "len(src_sparse_tables) != len(dest_sparse_tables)," \
                " %s vs %s" % (len(src_sparse_tables), \
                len(dest_sparse_tables)))
        for i in src_sparse_tables:
            config.src_sparse_tables.append(i)
        for i in dest_sparse_tables:
            config.dest_sparse_tables.append(i)

        src_dense_tables = config_dict.get("src_dense_tables", [])
        if not isinstance(src_dense_tables, list):
            src_dense_tables = [src_dense_tables]
        dest_dense_tables = config_dict.get("dest_dense_tables", [])
        if not isinstance(dest_dense_tables, list):
            dest_dense_tables = [dest_dense_tables]
        if len(src_dense_tables) != len(dest_dense_tables):
            raise ValueError(
                "len(src_dense_tables) != len(dest_dense_tables)," \
                " %s vs %s" % (len(src_dense_tables), \
                len(dest_dense_tables)))
        for i in src_dense_tables:
            config.src_dense_tables.append(i)
        for i in dest_dense_tables:
            config.dest_dense_tables.append(i)

        # user can also specify dense variables to copy,
        # instead of copy dense table
        src_var_list = config_dict.get("src_var_list", [])
        if not isinstance(src_var_list, list):
            src_var_list = [src_var_list]
        dest_var_list = config_dict.get("dest_var_list", [])
        if not isinstance(dest_var_list, list):
            dest_var_list = [dest_var_list]
        if len(src_var_list) != len(dest_var_list):
            raise ValueError(
                "len(src_var_list) != len(dest_var_list), %s vs" \
                " %s" % (len(src_var_list), len(dest_var_list)))
        for i in src_var_list:
            config.src_var_list.append(i)
        for i in dest_var_list:
            config.dest_var_list.append(i)

        dependency_map = config_dict.get("dependency_map", {})
        for key in dependency_map:
            m = config.table_denpendency_map.add()
            m.key = key
            values = dependency_map[key]
            if not isinstance(values, list):
                values = [values]
            if len(values) != 1:
                raise ValueError("dependency len %s != 1" % len(values))
            for value in values:
                m.values.append(value)
        config.dense_pull_after_copy = \
            config_dict.get("dense_pull_after_copy", True)
        config.enable_dependency = \
            config_dict.get("enable_dependency", False)
        config.sparse_copy_by_feasign = \
            config_dict.get("sparse_copy_by_feasign", True)

192
    def _desc(self):
D
dongdaxiang 已提交
193
        from google.protobuf import text_format
H
hutuxian 已提交
194
        return self.proto_desc.SerializeToString()
195

H
hutuxian 已提交
196
    def __str__(self):
197 198
        from google.protobuf import text_format
        return text_format.MessageToString(self.proto_desc)
H
hutuxian 已提交
199

200 201

class MultiTrainer(TrainerDesc):
T
Thunderbrook 已提交
202 203 204 205 206
    '''
    Implement of MultiTrainer.
    Can be init from TrainerDesc.
    '''

D
dongdaxiang 已提交
207
    def __init__(self):
208
        super(MultiTrainer, self).__init__()
D
dongdaxiang 已提交
209
        pass
210

211
    def _set_program(self, program):
212
        super(MultiTrainer, self)._set_program(program)
D
dongdaxiang 已提交
213
        self._program = program
214

215
    def _gen_trainer_desc(self):
216
        super(MultiTrainer, self)._gen_trainer_desc()
D
dongdaxiang 已提交
217
        self.proto_desc.class_name = "MultiTrainer"
D
fix bug  
dongdaxiang 已提交
218
        self._device_worker._set_infer(self._infer)
D
dongdaxiang 已提交
219
        self._device_worker._gen_worker_desc(self.proto_desc)
220

221 222

class DistMultiTrainer(TrainerDesc):
223 224 225 226 227
    """
    Implement of DistMultiTrainer.
    It's for Distributed training.
    """

228
    def __init__(self):
229
        super(DistMultiTrainer, self).__init__()
230
        pass
231

232
    def _set_program(self, program):
233
        super(DistMultiTrainer, self)._set_program(program)
D
dongdaxiang 已提交
234
        self._program = program
235

236
    def _gen_trainer_desc(self):
237
        super(DistMultiTrainer, self)._gen_trainer_desc()
238
        self.proto_desc.class_name = "DistMultiTrainer"
D
dongdaxiang 已提交
239
        if self._program == None:
240
            raise RuntimeError("None Program")
D
fix bug  
dongdaxiang 已提交
241 242
        self._device_worker._set_infer(self._infer)
        self._device_worker._set_program(self._program)
D
dongdaxiang 已提交
243
        self._device_worker._gen_worker_desc(self.proto_desc)
H
hutuxian 已提交
244 245 246


class PipelineTrainer(TrainerDesc):
247 248 249 250 251
    """
    Implement of PipelineTrainer.
    It's for Pipeline.
    """

H
hutuxian 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    def __init__(self):
        super(PipelineTrainer, self).__init__()
        pass

    def _set_program(self, program):
        super(PipelineTrainer, self)._set_program(program)
        self._program = program

    def _gen_trainer_desc(self):
        super(PipelineTrainer, self)._gen_trainer_desc()
        self.proto_desc.class_name = "PipelineTrainer"
        if self._program == None:
            raise RuntimeError("None Program")
        self._device_worker._set_infer(self._infer)
        self._device_worker._set_program(self._program)
        self._device_worker._gen_worker_desc(self.proto_desc)