sequence_conv_op.cc 10.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_conv_op.h"
C
chengduoZH 已提交
16

Y
Yang Yang 已提交
17
#include <algorithm>
18 19 20
#include <memory>
#include <string>
#include <unordered_set>
Y
Yang Yang 已提交
21

C
chengduoZH 已提交
22 23 24
namespace paddle {
namespace operators {

C
chengduoZH 已提交
25
class SequenceConvOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
26 27 28 29
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
30
  void InferShape(framework::InferShapeContext *ctx) const override {
31 32 33
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceConv");
    OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "SequenceConv");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "SequenceConv");
C
chengduoZH 已提交
34

C
chengduoZH 已提交
35 36
    int context_length = ctx->Attrs().Get<int>("contextLength");
    int context_start = ctx->Attrs().Get<int>("contextStart");
C
chengduoZH 已提交
37

C
chengduoZH 已提交
38 39
    auto in_dims = ctx->GetInputDim("X");
    auto filter_dims = ctx->GetInputDim("Filter");
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    PADDLE_ENFORCE_EQ(
        ctx->Attrs().Get<int>("contextStride"), 1,
        platform::errors::InvalidArgument(
            "Currently, SequenceConvOp only supports contextStride=1. But "
            "received contextStride = %u.",
            ctx->Attrs().Get<int>("contextStride")));
    PADDLE_ENFORCE_EQ(
        in_dims.size() == 2 && filter_dims.size() == 2, true,
        platform::errors::InvalidArgument(
            "Input(X, Filter) should be 2-D tensor. But received Input(X): "
            "input rank %u, input shape [%s]; received Input(Filter): "
            "input rank %u, input shape [%s].",
            in_dims.size(), in_dims, filter_dims.size(), filter_dims));
    PADDLE_ENFORCE_EQ(
        filter_dims[0], context_length * in_dims[1],
        platform::errors::InvalidArgument(
            "Filter's height should be context_length * "
            "input_hidden_size. But received: filter's height = %d, "
            "context_length * input_hidden_size = %d.",
            filter_dims[0], context_length * in_dims[1]));
C
chengduoZH 已提交
60

C
chengduoZH 已提交
61
    if (ctx->Attrs().Get<bool>("paddingTrainable")) {
62 63
      OP_INOUT_CHECK(ctx->HasInput("PaddingData"), "Input", "PaddingData",
                     "sequence_conv");
64
      framework::DDim padding_dim = ctx->GetInputDim("PaddingData");
C
chengduoZH 已提交
65 66 67 68
      int up_pad = std::max(0, -context_start);
      int down_pad = std::max(0, context_start + context_length - 1);
      int total_pad = up_pad + down_pad;
      int input_width = static_cast<int>(in_dims[1]);
69 70 71
      bool start_equals_zero = context_start == 0;
      bool length_equals_one = context_length == 1;
      bool start_length = start_equals_zero && length_equals_one;
C
chengduoZH 已提交
72

73 74 75 76 77
      PADDLE_ENFORCE_EQ(
          start_length, false,
          platform::errors::InvalidArgument(
              "If context_start is 0 and context_length is 1, paddingTrainable "
              "should be false."));
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
      PADDLE_ENFORCE_EQ(
          padding_dim.size(), 2,
          platform::errors::InvalidArgument(
              "Input(PaddingData) should be 2-D tensor. But received: "
              "input rank %u, input shape [%s].",
              padding_dim.size(), padding_dim));
      PADDLE_ENFORCE_EQ(
          padding_dim[0] == total_pad && padding_dim[1] == input_width, true,
          platform::errors::InvalidArgument("Input(PaddingData)'s shape is not "
                                            "consistent with 'context_start' "
                                            "and 'context_length'. Received "
                                            "Input(PaddingData): input rank "
                                            "%u, "
                                            "input shape [%s].",
                                            padding_dim.size(), padding_dim));
C
chengduoZH 已提交
93 94
    }

C
chengduoZH 已提交
95
    in_dims[1] = filter_dims[1];
C
chengduoZH 已提交
96
    ctx->SetOutputDim("Out", in_dims);
C
chengduoZH 已提交
97
    ctx->ShareLoD("X", "Out");
C
chengduoZH 已提交
98 99 100
  }
};

C
chengduoZH 已提交
101
class SequenceConvGradOp : public framework::OperatorWithKernel {
C
chengduoZH 已提交
102 103 104 105
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
106
  void InferShape(framework::InferShapeContext *ctx) const override {
107 108 109
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "SequenceConvGrad");
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "SequenceConvGrad");
C
chengduoZH 已提交
110

C
chengduoZH 已提交
111
    if (ctx->Attrs().Get<bool>("paddingTrainable") &&
C
chengduoZH 已提交
112
        ctx->HasOutput(framework::GradVarName("PaddingData"))) {
C
chengduoZH 已提交
113 114
      ctx->SetOutputDim(framework::GradVarName("PaddingData"),
                        ctx->GetInputDim("PaddingData"));
C
chengduoZH 已提交
115
    }
C
chengduoZH 已提交
116
    if (ctx->HasOutput(framework::GradVarName("X"))) {
117 118
      ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
      ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
C
chengduoZH 已提交
119
    }
C
chengduoZH 已提交
120 121 122 123
    if (ctx->HasOutput(framework::GradVarName("Filter"))) {
      ctx->SetOutputDim(framework::GradVarName("Filter"),
                        ctx->GetInputDim("Filter"));
    }
C
chengduoZH 已提交
124 125 126
  }
};

C
chengduoZH 已提交
127
class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker {
C
chengduoZH 已提交
128
 public:
Y
Yu Yang 已提交
129
  void Make() override {
C
chengduoZH 已提交
130 131
    AddInput(
        "X",
132
        "(LoDTensor) the input(X) is a LodTensor, which supports "
C
chengduoZH 已提交
133
        "variable-time length input sequence. The underlying tensor in "
134 135
        "this LoDTensor is a matrix with shape (T, N), where T is the "
        "total time steps in this mini-batch and N is the input_hidden_size.");
C
chengduoZH 已提交
136
    AddInput("PaddingData",
C
chengduoZH 已提交
137 138
             "(Tensor, optional) the input(PaddingData) is an optional "
             "parameter, and it is learnable. "
C
chengduoZH 已提交
139 140
             "This is a tensor with shape (P, N), where P is the "
             "top_pad + bottom_pad, N is the input_hidden_size. In order to "
C
chengduoZH 已提交
141 142 143 144
             "ensure the equal length of sequence before and after "
             "convolution, it is necessary to fill the top and bottom of each "
             "sequence according to context_length, context_stride and "
             "context_start")
C
chengduoZH 已提交
145
        .AsDispensable();
C
chengduoZH 已提交
146 147 148
    AddInput(
        "Filter",
        "(Tensor) the input(Filter) is an learnable parameter."
C
chengduoZH 已提交
149 150
        "This is a tensor with shape (K, M), where K is the "
        "context_length * input_hidden_size, M is the output feature size.");
C
chengduoZH 已提交
151 152 153 154
    AddOutput(
        "Out",
        "(LoDTensor) the output(Out) is a LodTensor, which support "
        "variable-time length output sequence. The underlying tensor in "
C
chengduoZH 已提交
155 156
        "this LoDTensor is a matrix with shape (T, M), where, T is the "
        "total time steps in this mini-batch, M is the output feature size.");
C
chengduoZH 已提交
157

C
chengduoZH 已提交
158
    AddAttr<bool>("paddingTrainable",
C
chengduoZH 已提交
159
                  "(bool, default:false) the padding data of SequenceConvOp "
C
chengduoZH 已提交
160 161
                  "is trainable or not.")
        .SetDefault(false);
C
chengduoZH 已提交
162
    AddAttr<int>("contextLength",
C
chengduoZH 已提交
163
                 "(int) the contextLength of SequenceConvOp is the "
C
chengduoZH 已提交
164
                 "height of the convolution kernel.")
C
chengduoZH 已提交
165
        .GreaterThan(0);
C
chengduoZH 已提交
166
    AddAttr<int>("contextStart",
C
chengduoZH 已提交
167
                 "(int, default:0) the contextStart of SequenceConvOp "
C
chengduoZH 已提交
168
                 "represents the beginning of the convolution of the number of "
C
chengduoZH 已提交
169 170 171 172 173
                 "rows of sequence, which can be negative. The negative number "
                 "means to pad contextStart time-steps of zeros or learnable "
                 "parameters at the beginning of each instance. The positive "
                 "number means to skip contextStart time-steps of each "
                 "instance.")
C
chengduoZH 已提交
174
        .SetDefault(0);
C
chengduoZH 已提交
175
    AddAttr<int>("contextStride",
C
chengduoZH 已提交
176
                 "(int, default:1) the contextStride of SequenceConvOp "
C
chengduoZH 已提交
177
                 "represents the stride length of convolution kernel. "
C
chengduoZH 已提交
178
                 "Currently, SequenceConvOp only supports"
C
chengduoZH 已提交
179
                 "contextStride=1.")
C
chengduoZH 已提交
180
        .SetDefault(1)
C
chengduoZH 已提交
181
        .GreaterThan(0);
C
chengduoZH 已提交
182 183

    AddComment(R"DOC(
184 185 186 187 188 189 190 191 192 193
Sequence Conv Operator.

SequenceConvOp performs convolution operation on features of contextLength
time-steps of each instance. The convolution operation calculates the output
based on the input, filter, strides and paddings parameters.
The size of each dimension of the parameters is checked during infer-shape.
In order to ensure the equal length of sequence before and after convolution,
it is necessary to fill the top and bottom of each sequence based on
context_length, context_stride and context_start.

C
chengduoZH 已提交
194 195 196 197
    )DOC");
  }
};

H
hong 已提交
198 199
template <typename T>
class SequenceConvGradOpMaker : public framework::SingleGradOpMaker<T> {
200
 public:
H
hong 已提交
201
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
202 203

 protected:
204
  void Apply(GradOpPtr<T> op) const override {
205
    op->SetType("sequence_conv_grad");
H
hong 已提交
206
    op->SetAttrMap(this->Attrs());
207

H
hong 已提交
208
    if (op->HasAttr("paddingTrainable") &&
209
        BOOST_GET_CONST(bool, op->GetAttr("paddingTrainable")) &&
H
hong 已提交
210 211
        this->HasInput("PaddingData")) {
      op->SetInput("PaddingData", this->Input("PaddingData"));
212
      op->SetOutput(framework::GradVarName("PaddingData"),
H
hong 已提交
213
                    this->InputGrad("PaddingData"));
214 215
    }

H
hong 已提交
216 217 218
    op->SetInput("X", this->Input("X"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
219

H
hong 已提交
220 221
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
222 223 224 225 226 227 228 229
  }
};

class SequenceConvGradNoNeedBufferVarsInference
    : public framework::NoNeedBufferVarsInference {
 public:
  using framework::NoNeedBufferVarsInference::NoNeedBufferVarsInference;

230 231 232
  const std::unordered_set<std::string> &operator()(
      const framework::InferNoNeedBufferVarsContext &ctx) const final {
    static const std::unordered_set<std::string> kPaddingData({"PaddingData"});
233
    if (!BOOST_GET_CONST(bool, ctx.GetAttr("paddingTrainable"))) {
234
      return kPaddingData;
235
    } else {
236
      return Empty();
237 238 239 240
    }
  }
};

C
chengduoZH 已提交
241 242 243 244
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
245
REGISTER_OPERATOR(sequence_conv, ops::SequenceConvOp, ops::SequenceConvOpMaker,
H
hong 已提交
246 247
                  ops::SequenceConvGradOpMaker<paddle::framework::OpDesc>,
                  ops::SequenceConvGradOpMaker<paddle::imperative::OpBase>);
248 249 250

REGISTER_OPERATOR(sequence_conv_grad, ops::SequenceConvGradOp,
                  ops::SequenceConvGradNoNeedBufferVarsInference);
C
chengduoZH 已提交
251 252

REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
253 254 255
    sequence_conv,
    ops::SequenceConvKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceConvKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
256
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
257
    sequence_conv_grad,
Q
QI JUN 已提交
258 259
    ops::SequenceConvGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SequenceConvGradKernel<paddle::platform::CPUDeviceContext, double>);