flowers.py 8.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module will download dataset from
16
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
17 18
and parse train/test set intopaddle reader creators.

19
This set contains images of flowers belonging to 102 different categories.
20 21 22 23 24 25
The images were acquired by searching the web and taking pictures. There are a
minimum of 40 images for each category.

The database was used in:

Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
26 27
 number of classes.Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing (2008)
28 29 30
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.

"""
31 32 33

from __future__ import print_function

34
import itertools
35
import functools
36
from .common import download
37
import tarfile
38 39 40 41 42 43

from paddle.dataset.image import load_image_bytes
from paddle.dataset.image import load_image
from paddle.dataset.image import simple_transform
from paddle.dataset.image import batch_images_from_tar

44
from paddle.reader import map_readers, xmap_readers
M
minqiyang 已提交
45
from paddle import compat as cpt
46
import paddle.utils.deprecated as deprecated
47 48
import os
import numpy as np
49
from multiprocessing import cpu_count
M
minqiyang 已提交
50
import six
51
from six.moves import cPickle as pickle
L
LielinJiang 已提交
52
from paddle.utils import try_import
53

54 55 56
DATA_URL = 'http://paddlemodels.bj.bcebos.com/flowers/102flowers.tgz'
LABEL_URL = 'http://paddlemodels.bj.bcebos.com/flowers/imagelabels.mat'
SETID_URL = 'http://paddlemodels.bj.bcebos.com/flowers/setid.mat'
M
minqiyang 已提交
57
DATA_MD5 = '52808999861908f626f3c1f4e79d11fa'
58 59
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
W
wanghaoshuang 已提交
60 61 62 63 64 65
# In official 'readme', tstid is the flag of test data
# and trnid is the flag of train data. But test data is more than train data.
# So we exchange the train data and test data.
TRAIN_FLAG = 'tstid'
TEST_FLAG = 'trnid'
VALID_FLAG = 'valid'
66 67


68
def default_mapper(is_train, sample):
69 70 71 72
    '''
    map image bytes data to type needed by model input layer
    '''
    img, label = sample
73
    img = load_image_bytes(img)
D
dangqingqing 已提交
74
    img = simple_transform(
D
dangqingqing 已提交
75
        img, 256, 224, is_train, mean=[103.94, 116.78, 123.68])
76 77 78
    return img.flatten().astype('float32'), label


79 80 81 82
train_mapper = functools.partial(default_mapper, True)
test_mapper = functools.partial(default_mapper, False)


83 84 85
def reader_creator(data_file,
                   label_file,
                   setid_file,
86
                   dataset_name,
87
                   mapper,
88
                   buffered_size=1024,
89 90
                   use_xmap=True,
                   cycle=False):
91
    '''
92
    1. read images from tar file and
93 94
        merge images into batch files in 102flowers.tgz_batch/
    2. get a reader to read sample from batch file
95 96

    :param data_file: downloaded data file
97
    :type data_file: string
98
    :param label_file: downloaded label file
99 100 101 102
    :type label_file: string
    :param setid_file: downloaded setid file containing information
                        about how to split dataset
    :type setid_file: string
103 104
    :param dataset_name: data set name (tstid|trnid|valid)
    :type dataset_name: string
105
    :param mapper: a function to map image bytes data to type
106 107
                    needed by model input layer
    :type mapper: callable
108 109
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
110 111
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
112 113 114
    :return: data reader
    :rtype: callable
    '''
L
LielinJiang 已提交
115 116
    scio = try_import('scipy.io')

117 118
    labels = scio.loadmat(label_file)['labels'][0]
    indexes = scio.loadmat(setid_file)[dataset_name][0]
L
LielinJiang 已提交
119

120 121 122 123 124
    img2label = {}
    for i in indexes:
        img = "jpg/image_%05d.jpg" % i
        img2label[img] = labels[i - 1]
    file_list = batch_images_from_tar(data_file, dataset_name, img2label)
125 126

    def reader():
127
        while True:
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
            with open(file_list, 'r') as f_list:
                for file in f_list:
                    file = file.strip()
                    batch = None
                    with open(file, 'rb') as f:
                        if six.PY2:
                            batch = pickle.load(f)
                        else:
                            batch = pickle.load(f, encoding='bytes')

                        if six.PY3:
                            batch = cpt.to_text(batch)
                        data_batch = batch['data']
                        labels_batch = batch['label']
                        for sample, label in six.moves.zip(data_batch,
                                                           labels_batch):
                            yield sample, int(label) - 1
145 146
            if not cycle:
                break
147

W
wanghaoshuang 已提交
148
    if use_xmap:
C
chengduo 已提交
149
        return xmap_readers(mapper, reader, min(4, cpu_count()), buffered_size)
150 151
    else:
        return map_readers(mapper, reader)
152 153


154 155 156 157
@deprecated(
    since="2.0.0",
    update_to="paddle.vision.datasets.Flowers",
    reason="Please use new dataset API which supports paddle.io.DataLoader")
158
def train(mapper=train_mapper, buffered_size=1024, use_xmap=True, cycle=False):
159
    '''
160 161 162
    Create flowers training set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
163 164 165 166 167 168
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
169 170
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
171 172
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
173 174 175 176 177 178
    :return: train data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
179 180 181 182 183 184
        download(SETID_URL, 'flowers', SETID_MD5),
        TRAIN_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
185 186


187 188 189 190
@deprecated(
    since="2.0.0",
    update_to="paddle.vision.datasets.Flowers",
    reason="Please use new dataset API which supports paddle.io.DataLoader")
191
def test(mapper=test_mapper, buffered_size=1024, use_xmap=True, cycle=False):
192
    '''
193 194 195
    Create flowers test set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
196 197 198 199 200 201
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
202 203
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
204 205
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
206 207 208 209 210 211
    :return: test data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
212 213 214 215 216 217
        download(SETID_URL, 'flowers', SETID_MD5),
        TEST_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
218 219


220 221 222 223
@deprecated(
    since="2.0.0",
    update_to="paddle.vision.datasets.Flowers",
    reason="Please use new dataset API which supports paddle.io.DataLoader")
224
def valid(mapper=test_mapper, buffered_size=1024, use_xmap=True):
225
    '''
226 227 228
    Create flowers validation set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
229 230 231 232
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
233 234 235 236 237 238
    :param mapper:  a function to map sample.
    :type mapper: callable
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
    :return: test data reader
    :rtype: callable
239 240 241 242
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
W
wanghaoshuang 已提交
243 244
        download(SETID_URL, 'flowers', SETID_MD5), VALID_FLAG, mapper,
        buffered_size, use_xmap)
245 246 247 248 249 250


def fetch():
    download(DATA_URL, 'flowers', DATA_MD5)
    download(LABEL_URL, 'flowers', LABEL_MD5)
    download(SETID_URL, 'flowers', SETID_MD5)