flowers.py 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This module will download dataset from
16
http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html
17 18
and parse train/test set intopaddle reader creators.

19
This set contains images of flowers belonging to 102 different categories.
20 21 22 23 24 25
The images were acquired by searching the web and taking pictures. There are a
minimum of 40 images for each category.

The database was used in:

Nilsback, M-E. and Zisserman, A. Automated flower classification over a large
26 27
 number of classes.Proceedings of the Indian Conference on Computer Vision,
Graphics and Image Processing (2008)
28 29 30
http://www.robots.ox.ac.uk/~vgg/publications/papers/nilsback08.{pdf,ps.gz}.

"""
31 32 33

from __future__ import print_function

34
import itertools
35
import functools
36
from .common import download
37
import tarfile
38
from paddle.dataset.image import *
39
from paddle.reader import map_readers, xmap_readers
M
minqiyang 已提交
40
from paddle import compat as cpt
41
import paddle.utils.deprecated as deprecated
42 43
import os
import numpy as np
44
from multiprocessing import cpu_count
M
minqiyang 已提交
45
import six
46
from six.moves import cPickle as pickle
L
LielinJiang 已提交
47
from paddle.utils import try_import
48 49
__all__ = ['train', 'test', 'valid']

50 51 52
DATA_URL = 'http://paddlemodels.bj.bcebos.com/flowers/102flowers.tgz'
LABEL_URL = 'http://paddlemodels.bj.bcebos.com/flowers/imagelabels.mat'
SETID_URL = 'http://paddlemodels.bj.bcebos.com/flowers/setid.mat'
M
minqiyang 已提交
53
DATA_MD5 = '52808999861908f626f3c1f4e79d11fa'
54 55
LABEL_MD5 = 'e0620be6f572b9609742df49c70aed4d'
SETID_MD5 = 'a5357ecc9cb78c4bef273ce3793fc85c'
W
wanghaoshuang 已提交
56 57 58 59 60 61
# In official 'readme', tstid is the flag of test data
# and trnid is the flag of train data. But test data is more than train data.
# So we exchange the train data and test data.
TRAIN_FLAG = 'tstid'
TEST_FLAG = 'trnid'
VALID_FLAG = 'valid'
62 63


64
def default_mapper(is_train, sample):
65 66 67 68
    '''
    map image bytes data to type needed by model input layer
    '''
    img, label = sample
69
    img = load_image_bytes(img)
D
dangqingqing 已提交
70
    img = simple_transform(
D
dangqingqing 已提交
71
        img, 256, 224, is_train, mean=[103.94, 116.78, 123.68])
72 73 74
    return img.flatten().astype('float32'), label


75 76 77 78
train_mapper = functools.partial(default_mapper, True)
test_mapper = functools.partial(default_mapper, False)


79 80 81
def reader_creator(data_file,
                   label_file,
                   setid_file,
82
                   dataset_name,
83
                   mapper,
84
                   buffered_size=1024,
85 86
                   use_xmap=True,
                   cycle=False):
87
    '''
88
    1. read images from tar file and
89 90
        merge images into batch files in 102flowers.tgz_batch/
    2. get a reader to read sample from batch file
91 92

    :param data_file: downloaded data file
93
    :type data_file: string
94
    :param label_file: downloaded label file
95 96 97 98
    :type label_file: string
    :param setid_file: downloaded setid file containing information
                        about how to split dataset
    :type setid_file: string
99 100
    :param dataset_name: data set name (tstid|trnid|valid)
    :type dataset_name: string
101
    :param mapper: a function to map image bytes data to type
102 103
                    needed by model input layer
    :type mapper: callable
104 105
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
106 107
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
108 109 110
    :return: data reader
    :rtype: callable
    '''
L
LielinJiang 已提交
111 112
    scio = try_import('scipy.io')

113 114
    labels = scio.loadmat(label_file)['labels'][0]
    indexes = scio.loadmat(setid_file)[dataset_name][0]
L
LielinJiang 已提交
115

116 117 118 119 120
    img2label = {}
    for i in indexes:
        img = "jpg/image_%05d.jpg" % i
        img2label[img] = labels[i - 1]
    file_list = batch_images_from_tar(data_file, dataset_name, img2label)
121 122

    def reader():
123
        while True:
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
            with open(file_list, 'r') as f_list:
                for file in f_list:
                    file = file.strip()
                    batch = None
                    with open(file, 'rb') as f:
                        if six.PY2:
                            batch = pickle.load(f)
                        else:
                            batch = pickle.load(f, encoding='bytes')

                        if six.PY3:
                            batch = cpt.to_text(batch)
                        data_batch = batch['data']
                        labels_batch = batch['label']
                        for sample, label in six.moves.zip(data_batch,
                                                           labels_batch):
                            yield sample, int(label) - 1
141 142
            if not cycle:
                break
143

W
wanghaoshuang 已提交
144
    if use_xmap:
C
chengduo 已提交
145
        return xmap_readers(mapper, reader, min(4, cpu_count()), buffered_size)
146 147
    else:
        return map_readers(mapper, reader)
148 149


150 151 152 153
@deprecated(
    since="2.0.0",
    update_to="paddle.vision.datasets.Flowers",
    reason="Please use new dataset API which supports paddle.io.DataLoader")
154
def train(mapper=train_mapper, buffered_size=1024, use_xmap=True, cycle=False):
155
    '''
156 157 158
    Create flowers training set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
159 160 161 162 163 164
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
165 166
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
167 168
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
169 170 171 172 173 174
    :return: train data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
175 176 177 178 179 180
        download(SETID_URL, 'flowers', SETID_MD5),
        TRAIN_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
181 182


183 184 185 186
@deprecated(
    since="2.0.0",
    update_to="paddle.vision.datasets.Flowers",
    reason="Please use new dataset API which supports paddle.io.DataLoader")
187
def test(mapper=test_mapper, buffered_size=1024, use_xmap=True, cycle=False):
188
    '''
189 190 191
    Create flowers test set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
192 193 194 195 196 197
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
    :param mapper:  a function to map sample.
    :type mapper: callable
198 199
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
200 201
    :param cycle: whether to cycle through the dataset
    :type cycle: bool
202 203 204 205 206 207
    :return: test data reader
    :rtype: callable
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
208 209 210 211 212 213
        download(SETID_URL, 'flowers', SETID_MD5),
        TEST_FLAG,
        mapper,
        buffered_size,
        use_xmap,
        cycle=cycle)
214 215


216 217 218 219
@deprecated(
    since="2.0.0",
    update_to="paddle.vision.datasets.Flowers",
    reason="Please use new dataset API which supports paddle.io.DataLoader")
220
def valid(mapper=test_mapper, buffered_size=1024, use_xmap=True):
221
    '''
222 223 224
    Create flowers validation set reader.
    It returns a reader, each sample in the reader is
    image pixels in [0, 1] and label in [1, 102]
225 226 227 228
    translated from original color image by steps:
    1. resize to 256*256
    2. random crop to 224*224
    3. flatten
229 230 231 232 233 234
    :param mapper:  a function to map sample.
    :type mapper: callable
    :param buffered_size: the size of buffer used to process images
    :type buffered_size: int
    :return: test data reader
    :rtype: callable
235 236 237 238
    '''
    return reader_creator(
        download(DATA_URL, 'flowers', DATA_MD5),
        download(LABEL_URL, 'flowers', LABEL_MD5),
W
wanghaoshuang 已提交
239 240
        download(SETID_URL, 'flowers', SETID_MD5), VALID_FLAG, mapper,
        buffered_size, use_xmap)
241 242 243 244 245 246


def fetch():
    download(DATA_URL, 'flowers', DATA_MD5)
    download(LABEL_URL, 'flowers', LABEL_MD5)
    download(SETID_URL, 'flowers', SETID_MD5)