op_converter.h 9.2 KB
Newer Older
L
Luo Tao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <string>
#include <unordered_map>
N
nhzlx 已提交
19
#include <unordered_set>
20
#include <vector>
L
Luo Tao 已提交
21
#include "paddle/fluid/framework/block_desc.h"
22
#include "paddle/fluid/framework/op_registry.h"
L
Luo Tao 已提交
23
#include "paddle/fluid/framework/scope.h"
24
#include "paddle/fluid/inference/analysis/helper.h"
L
Luo Tao 已提交
25
#include "paddle/fluid/inference/tensorrt/engine.h"
26
#include "paddle/fluid/inference/tensorrt/helper.h"
L
Luo Tao 已提交
27
#include "paddle/fluid/inference/utils/singleton.h"
L
Luo Tao 已提交
28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace inference {
namespace tensorrt {

/*
 * Convert Op from Fluid to TensorRT Engine.
 */
class OpConverter {
 public:
  OpConverter() {}
L
Luo Tao 已提交
39

40 41
  // Converter logic for an op.
  virtual void operator()(const framework::proto::OpDesc& op,
42 43
                          const framework::Scope& scope,
                          bool test_mode = false) {}
44

45 46
  // Convert a single fluid operator and add the corresponding layer to TRT.
  // test_mode: whether the instance executes in an unit test.
47 48
  void ConvertOp(const framework::proto::OpDesc& op,
                 const std::unordered_set<std::string>& parameters,
49 50
                 const framework::Scope& scope, TensorRTEngine* engine,
                 bool test_mode = false) {
Y
Yan Chunwei 已提交
51
    framework::OpDesc op_desc(op, nullptr);
52 53

    OpConverter* it{nullptr};
L
Luo Tao 已提交
54

55 56 57 58
    if (op_desc.Type() == "mul") {
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
59
        it = Registry<OpConverter>::Global().Lookup("fc");
60 61
      }
    }
N
nhzlx 已提交
62 63 64 65 66 67
    if (op_desc.Type().find("elementwise") != std::string::npos) {
      static std::unordered_set<std::string> add_tensor_op_set{
          "add", "mul", "sub", "div", "max", "min", "pow"};
      // TODO(xingzhaolong): all mul, sub, div
      // static std::unordered_set<std::string> add_weight_op_set {"add", "mul",
      // "sub", "div"};
68
      static std::unordered_set<std::string> add_weight_op_set{"add", "mul"};
N
nhzlx 已提交
69 70 71 72 73 74 75
      PADDLE_ENFORCE_EQ(op_desc.Input("Y").size(), 1UL);
      int op_type_len = op_desc.Type().size();
      std::string op_type = op_desc.Type().substr(op_type_len - 3, op_type_len);
      std::string Y = op_desc.Input("Y")[0];
      if (parameters.count(Y)) {
        PADDLE_ENFORCE(add_weight_op_set.count(op_type) > 0,
                       "Unsupported elementwise type" + op_type);
76 77
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_weight");
78 79
        PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                                op_desc.Type());
N
nhzlx 已提交
80 81 82
      } else {
        PADDLE_ENFORCE(add_tensor_op_set.count(op_type) > 0,
                       "Unsupported elementwise type" + op_type);
83 84
        it = Registry<OpConverter>::Global().Lookup("elementwise_" + op_type +
                                                    "_tensor");
N
nhzlx 已提交
85
      }
N
nhzlx 已提交
86 87 88 89 90
      PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                              op_desc.Type());
    }

    if (op_desc.Type() == "depthwise_conv2d") {
91
      it = Registry<OpConverter>::Global().Lookup("conv2d");
N
nhzlx 已提交
92 93
      PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                              op_desc.Type());
N
nhzlx 已提交
94 95
    }

96
    if (!it) {
97
      it = Registry<OpConverter>::Global().Lookup(op_desc.Type());
98 99 100 101
    }
    PADDLE_ENFORCE_NOT_NULL(it, "no OpConverter for optype [%s]",
                            op_desc.Type());
    it->SetEngine(engine);
102
    (*it)(op, scope, test_mode);
L
Luo Tao 已提交
103 104
  }

Y
Yan Chunwei 已提交
105 106
  // Convert a fluid block to tensorrt network, NOTE it just convert operators,
  // the INetwork's inputs and outputs should specified in some other modules.
107
  void ConvertBlock(const framework::proto::BlockDesc& block,
108 109
                    const std::unordered_set<std::string>& parameters,
                    const framework::Scope& scope, TensorRTEngine* engine) {
N
nhzlx 已提交
110
    std::unique_lock<std::mutex> lk(mut_);
K
Kexin Zhao 已提交
111
    for (int i = 0; i < block.ops_size(); i++) {
112
      const auto& op = block.ops(i);
113
      ConvertOp(op, parameters, scope, engine);
L
Luo Tao 已提交
114 115 116
    }
  }

N
nhzlx 已提交
117
  // The scope  here should be inited with the parameter vars.
118 119 120 121 122 123 124 125 126 127 128 129
  void ConvertBlockToTRTEngine(
      framework::BlockDesc* block_desc, const framework::Scope& scope,
      const std::vector<std::string>& inputs,
      const std::unordered_set<std::string>& parameters,
      const std::vector<std::string>& outputs, TensorRTEngine* engine) {
    engine->InitNetwork();
    for (auto& input : inputs) {
      if (parameters.count(input)) continue;
      auto* var = block_desc->FindVar(input);
      PADDLE_ENFORCE(var, "no variable called %s", input);
      PADDLE_ENFORCE_EQ(var->GetType(), FluidDT::VarType_Type_LOD_TENSOR,
                        "TensorRT engine only takes LoDTensor as input");
N
nhzlx 已提交
130
      auto var_shape = var->GetShape();
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
      if (engine->with_dynamic_shape()) {
#if IS_TRT_VERSION_GE(6000)
        auto min_input_shape = engine->min_input_shape()[input];
        auto max_input_shape = engine->max_input_shape()[input];
        auto optim_input_shape = engine->optim_input_shape()[input];
        size_t ranks = min_input_shape.size();
        std::vector<int64_t> input_shape;
        input_shape.push_back(-1);
        for (size_t i = 1; i < ranks; i++) {
          if (min_input_shape[i] != max_input_shape[i]) {
            input_shape.push_back(-1);
          } else {
            input_shape.push_back(min_input_shape[i]);
            // the i dimension should be same.
            PADDLE_ENFORCE_EQ(min_input_shape[i], optim_input_shape[i],
                              platform::errors::InvalidArgument(
                                  "The dim (%d) of the min_input_shape and "
                                  "optim_input_shape should be same."));
          }
        }
        engine->DeclareInput(
            input, FluidDataType2TRT(
                       var->Proto()->type().lod_tensor().tensor().data_type()),
            Vec2TRT_Dims(input_shape, input, true));
#endif
      } else {
        engine->DeclareInput(
            input, FluidDataType2TRT(
                       var->Proto()->type().lod_tensor().tensor().data_type()),
            Vec2TRT_Dims(var_shape, input));
      }
162 163 164 165 166 167 168
    }
    framework::proto::BlockDesc* block_proto = block_desc->Proto();
    ConvertBlock(*block_proto, parameters, scope, engine);
    for (auto& output : outputs) {
      engine->DeclareOutput(output);
    }
    engine->FreezeNetwork();
169
    engine->ClearWeights();
170 171
  }

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
  void RreplenishLayerAndOutput(
      nvinfer1::ILayer* layer, const std::string& layer_type,
      const std::vector<std::string>& output_tensor_names,
      bool test_mode = false) {
    size_t num_out = output_tensor_names.size();
    for (size_t i = 0; i < num_out; i++) {
      layer->getOutput(i)->setName(output_tensor_names[i].c_str());
      engine_->SetITensor(output_tensor_names[i], layer->getOutput(i));
      if (test_mode) {
        engine_->DeclareOutput(output_tensor_names[i]);
      }
    }
    layer->setName(
        (layer_type + " (Output: " + output_tensor_names[0] + ")").c_str());
  }
L
Luo Tao 已提交
187 188
  void SetEngine(TensorRTEngine* engine) { engine_ = engine; }

L
Luo Tao 已提交
189 190
  virtual ~OpConverter() {}

L
Luo Tao 已提交
191 192 193
  // TensorRT engine
  TensorRTEngine* engine_{nullptr};

194 195 196
 protected:
  bool test_mode_;

L
Luo Tao 已提交
197 198 199 200 201
 private:
  // registered op converter map, whose key is the fluid op type, and value is
  // the pointer position of corresponding OpConverter class.
  std::unordered_map<std::string, OpConverter*> converters_;
  // fluid inference scope
L
Luo Tao 已提交
202
  framework::Scope* scope_{nullptr};
N
nhzlx 已提交
203
  std::mutex mut_;
L
Luo Tao 已提交
204 205
};

206 207 208 209
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

210 211 212
#define REGISTER_TRT_OP_CONVERTER(op_type__, Converter__)                      \
  struct trt_##op_type__##_converter : public ::paddle::framework::Registrar { \
    trt_##op_type__##_converter() {                                            \
213 214 215
      ::paddle::inference::Registry<                                           \
          paddle::inference::tensorrt::OpConverter>::Global()                  \
          .Register<::paddle::inference::tensorrt::Converter__>(#op_type__);   \
216 217 218 219 220 221 222 223
    }                                                                          \
  };                                                                           \
  trt_##op_type__##_converter trt_##op_type__##_converter__;                   \
  int TouchConverterRegister_##op_type__() {                                   \
    trt_##op_type__##_converter__.Touch();                                     \
    return 0;                                                                  \
  }

224 225 226
#define USE_TRT_CONVERTER(op_type__)                   \
  extern int TouchConverterRegister_##op_type__();     \
  static int use_op_converter_trt_##op_type__ UNUSED = \
227
      TouchConverterRegister_##op_type__();