hierarchical_sigmoid_op.cc 9.4 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
weixing02 已提交
15
#include "paddle/fluid/operators/hierarchical_sigmoid_op.h"
16
#include <string>
W
weixing02 已提交
17
#include <vector>
Y
Yancey1989 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
namespace paddle {
namespace operators {

/**
 * Organize the classes into a binary tree. At each node, a sigmoid function
 * is used to calculate the probability of belonging to the right branch.
 * This idea is from "F. Morin, Y. Bengio (AISTATS 05):
 * Hierarchical Probabilistic Neural Network Language Model."
 *
 * Here we uses a simple way of making the binary tree.
 * Assuming the number of classes C = 6,
 * The classes are organized as a binary tree in the following way:
 *
 * @code{.py}
 * *-*-*- 2
 * | | |- 3
 * | |
 * | |-*- 4
 * |   |- 5
 * |
 * |-*- 0
 *   |- 1
 * @endcode
 *
 * where * indicates an internal node, and each leaf node represents a class.
 * - Node 0 ... C-2 are internal nodes.
 * - Node C-1 ... 2C-2 are leaf nodes.
 * - Class c is represented by leaf node \f$c+C-1\f$.
 *
 * We assign an id for each node:
 * - the id of root be 0.
 * - the left child of a node i is 2*i+1.
 * - the right child of a node i is 2*i+2.
 *
 * It's easy to see that:
 * - the parent of node i is \f$\left\lfloor(i-1)/2\right\rfloor\f$.
 * - the j-th level ancestor of node i is
 * \f$\left\lfloor(i+1)/2^{j+1}\right\rfloor - 1\f$.
 * - A node i is a left child of its parent if \f$(i-1)\%2==0\f$.
 *
 */

class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
Y
Yancey1989 已提交
64
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
W
weixing02 已提交
65
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should not be null.");
Y
Yancey1989 已提交
66
    PADDLE_ENFORCE(ctx->HasInput("W"), "Input(W) should not be null.");
Y
Yancey1989 已提交
67
    PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) should not be null.");
W
weixing02 已提交
68 69
    PADDLE_ENFORCE(ctx->HasOutput("PreOut"),
                   "Output(PreOut) should not be null.");
Y
Yancey1989 已提交
70
    const int64_t batch_size = ctx->GetInputDim("X")[0];
Y
Yancey1989 已提交
71
    std::vector<int64_t> output_shape({batch_size, 1});
Y
Yancey1989 已提交
72
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
J
JiabinYang 已提交
73
    ctx->ShareLoD("X", /*->*/ "Out");
Y
Yancey1989 已提交
74
  }
Y
Yancey1989 已提交
75 76

 protected:
W
weixing02 已提交
77
  framework::OpKernelType GetExpectedKernelType(
Y
Yancey1989 已提交
78
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
79 80
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.GetPlace());
Y
Yancey1989 已提交
81
  }
Y
Yancey1989 已提交
82 83
};

W
weixing02 已提交
84
template <typename AttrType>
Y
Yancey1989 已提交
85 86
class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
W
weixing02 已提交
87
  void Make() override {
Y
Yancey1989 已提交
88
    AddInput("X",
J
JiabinYang 已提交
89
             "(LoDTensor, required) The input tensor with shape [N, D], "
G
guosheng 已提交
90
             "where N is the size of mini-batch, and D is the feature size.");
Y
Yancey1989 已提交
91
    AddInput("W",
J
JiabinYang 已提交
92
             "(LoDTensor, required), The parameters of hierarchical "
G
guosheng 已提交
93
             "sigmoid operator, each of them is a 2-D tensor, the shape is"
94
             "[K, D]. Which K is the num of non-leaf node in Path Tree");
W
weixing02 已提交
95
    AddInput("Label",
J
JiabinYang 已提交
96
             "(LoDTensor, required), The labels of training data. It's a"
G
guosheng 已提交
97
             "tensor with shape [N, 1].");
98
    AddInput("PTable",
J
JiabinYang 已提交
99
             "(LoDTensor, optional), The Path Table from root to current word"
100 101
             "it should have shape like [N, L], L is the length of the Path")
        .AsDispensable();
J
JiabinYang 已提交
102
    AddInput(
J
JiabinYang 已提交
103
        "PathCode",
J
JiabinYang 已提交
104 105 106
        "(LoDTensor, optional), The Code on each Node of the Path from root "
        "to current word"
        "it should have shape like [N, L], L is the length of the Path")
107
        .AsDispensable();
Y
Yancey1989 已提交
108
    AddInput("Bias",
J
JiabinYang 已提交
109
             "(LoDTensor, optional), The bias is a tensor with shape or "
110
             "[num_classes, 1]"
111 112
             "[num_classes - 1, 1].")
        .AsDispensable();
J
JiabinYang 已提交
113 114 115 116
    AddOutput(
        "Out",
        "(LoDTensor, required) The output of hierarchical sigmoid operator."
        "The shape is [N, 1].");
W
weixing02 已提交
117
    AddOutput("PreOut",
J
JiabinYang 已提交
118
              "(LoDTensor, required) A intermedia 2-D tensor with shape "
G
guosheng 已提交
119 120
              "[batch_size, code_length], where code_length represents the "
              "maximum path length from root to leaf nodes.")
W
weixing02 已提交
121
        .AsIntermediate();
J
JiabinYang 已提交
122
    AddAttr<AttrType>("num_classes", "(int, optional), The number of classes")
Y
Yancey1989 已提交
123
        .SetDefault(2);
Y
Yancey1989 已提交
124 125
    AddComment(R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
W
weixing02 已提交
126
At each node, a sigmoid function is used to calculate the probability of
W
weixing02 已提交
127 128
belonging to the right branch. This idea is from
"F. Morin, Y. Bengio (AISTATS 05):
Y
Yancey1989 已提交
129 130
Hierarchical Probabilistic Neural Network Language Model."
      )DOC");
J
JiabinYang 已提交
131 132 133 134
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
        .SetDefault(false);
Y
Yancey1989 已提交
135 136 137
  }
};

W
weixing02 已提交
138 139 140 141 142
class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("W"), "Input(W) should not be null.");
W
weixing02 已提交
143
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should not be null.");
J
JiabinYang 已提交
144 145
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@Grad) should not be null");
W
weixing02 已提交
146 147 148
    PADDLE_ENFORCE(ctx->HasInput("PreOut"),
                   "Input(Preout) should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("W")),
J
JiabinYang 已提交
149 150 151
                   "Output(W@Grad should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@Grad should not be null.");
152 153 154 155

    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
J
JiabinYang 已提交
156
    }
157
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
W
weixing02 已提交
158
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
J
JiabinYang 已提交
159
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
W
weixing02 已提交
160 161 162 163 164
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
165 166
    return framework::OpKernelType(ctx.Input<framework::LoDTensor>("X")->type(),
                                   ctx.GetPlace());
W
weixing02 已提交
167 168 169
  }
};

J
JiabinYang 已提交
170 171 172 173 174
class HierarchicalSigmoidGradOpGradVarTypeInference
    : public framework::VarTypeInference {
 public:
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
175 176 177 178 179 180 181 182 183 184
    auto w_grad_var_name = op_desc.Output(framework::GradVarName("W")).front();
    auto bias_grad_var_name_vec =
        op_desc.Output(framework::GradVarName("Bias"));
    std::string bias_grad_var_name;
    bool hasBias = false;
    if (bias_grad_var_name_vec.size()) {
      hasBias = true;
      bias_grad_var_name =
          op_desc.Output(framework::GradVarName("Bias")).front();
    }
J
JiabinYang 已提交
185 186 187
    auto attr = op_desc.GetAttr("is_sparse");
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
188 189 190
      VLOG(30) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
               << " is set to SelectedRows";
      block->Var(w_grad_var_name)
J
JiabinYang 已提交
191
          ->SetType(framework::proto::VarType::SELECTED_ROWS);
192 193 194 195 196 197
      if (hasBias) {
        VLOG(30) << "hierarchical_sigmoid_grad op "
                 << framework::GradVarName("Bias") << " is set to SelectedRows";
        block->Var(bias_grad_var_name)
            ->SetType(framework::proto::VarType::SELECTED_ROWS);
      }
J
JiabinYang 已提交
198
    } else {
199 200 201
      VLOG(30) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
               << " is set to LoDTensor";
      block->Var(w_grad_var_name)
J
JiabinYang 已提交
202
          ->SetType(framework::proto::VarType::LOD_TENSOR);
203 204 205 206 207 208
      if (hasBias) {
        VLOG(30) << "hierarchical_sigmoid_grad op "
                 << framework::GradVarName("Bias") << " is set to LoDTensor";
        block->Var(bias_grad_var_name)
            ->SetType(framework::proto::VarType::LOD_TENSOR);
      }
J
JiabinYang 已提交
209
    }
210
    block->Var(w_grad_var_name)->SetDataType(block->Var("W")->GetDataType());
J
JiabinYang 已提交
211 212 213
  }
};

Y
Yancey1989 已提交
214 215 216 217
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
W
weixing02 已提交
218 219 220
REGISTER_OPERATOR(hierarchical_sigmoid, ops::HierarchicalSigmoidOp,
                  ops::HierarchicalSigmoidOpMaker<int>,
                  paddle::framework::DefaultGradOpDescMaker<true>);
J
JiabinYang 已提交
221 222
REGISTER_OPERATOR(hierarchical_sigmoid_grad, ops::HierarchicalSigmoidGradOp,
                  ops::HierarchicalSigmoidGradOpGradVarTypeInference);
W
weixing02 已提交
223 224 225 226 227 228 229 230 231 232 233
REGISTER_OP_CPU_KERNEL(
    hierarchical_sigmoid,
    ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext,
                                     double>);
REGISTER_OP_CPU_KERNEL(
    hierarchical_sigmoid_grad,
    ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
                                         float>,
    ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
                                         double>);