resnet_unit.py 9.5 KB
Newer Older
Z
Zhang Zheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import collections
import itertools
import six
import math
import sys
import warnings
from functools import partial, reduce

import numpy as np
import paddle
import paddle.fluid as fluid
from paddle import framework
from paddle.device import get_device, get_cudnn_version
from paddle.nn import initializer as I
from paddle.nn import Layer, LayerList
from paddle.fluid.layers import utils
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers.utils import map_structure, flatten, pack_sequence_as
from paddle.fluid.data_feeder import convert_dtype
from paddle.fluid.param_attr import ParamAttr
from paddle import _C_ops
__all__ = ['resnet_unit', 'ResNetUnit']


def resnet_unit(x, filter_x, scale_x, bias_x, mean_x, var_x, z, filter_z,
                scale_z, bias_z, mean_z, var_z, stride, stride_z, padding,
                dilation, groups, momentum, eps, data_format, fuse_add,
                has_shortcut, use_global_stats, is_test, act):

    helper = LayerHelper('resnet_unit', **locals())
    bn_param_dtype = fluid.core.VarDesc.VarType.FP32
    bit_mask_dtype = fluid.core.VarDesc.VarType.INT32
    out = helper.create_variable_for_type_inference(x.dtype)
    bit_mask = helper.create_variable_for_type_inference(
        dtype=bit_mask_dtype, stop_gradient=True)
    # intermediate_out for x
    conv_x = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    saved_mean_x = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True)
    saved_invstd_x = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True)
    running_mean_x = mean_x
    running_var_x = var_x
    # intermediate_out for z
    conv_z = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    saved_mean_z = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True)
    saved_invstd_z = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True)
    running_mean_z = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True) if mean_z is None else mean_z
    running_var_z = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True) if var_z is None else var_z

    inputs = {
        'X': x,
        'FilterX': filter_x,
        'ScaleX': scale_x,
        'BiasX': bias_x,
        'MeanX': mean_x,
        'VarX': var_x,
        'Z': z,
        'FilterZ': filter_z,
        'ScaleZ': scale_z,
        'BiasZ': bias_z,
        'MeanZ': mean_z,
        'VarZ': var_z
    }

    attrs = {
        'stride': stride,
        'stride_z': stride_z,
        'padding': padding,
        'dilation': dilation,
        'group': groups,
        'momentum': momentum,
        'epsilon': eps,
        'data_format': data_format,
        'fuse_add': fuse_add,
        'has_shortcut': has_shortcut,
        'use_global_stats': use_global_stats,
        'is_test': is_test,
        'act_type': act
    }

    outputs = {
        'Y': out,
        'BitMask': bit_mask,
        'ConvX': conv_x,
        'SavedMeanX': saved_mean_x,
        'SavedInvstdX': saved_invstd_x,
        'RunningMeanX': running_mean_x,
        'RunningVarX': running_var_x,
        'ConvZ': conv_z,
        'SavedMeanZ': saved_mean_z,
        'SavedInvstdZ': saved_invstd_z,
        'RunningMeanZ': running_mean_z,
        'RunningVarZ': running_var_z,
    }

    helper.append_op(
        type='resnet_unit', inputs=inputs, outputs=outputs, attrs=attrs)

    return out


class ResNetUnit(Layer):
    r"""
    ******Temporary version******.
    ResNetUnit is designed for optimize the performence by using cudnnv8 API.
    """

    def __init__(self,
                 num_channels_x,
                 num_filters,
                 filter_size,
                 stride=1,
                 momentum=0.9,
                 eps=1e-5,
                 data_format='NHWC',
                 act='relu',
                 fuse_add=False,
                 has_shortcut=False,
                 use_global_stats=False,
                 is_test=False,
                 filter_x_attr=None,
                 scale_x_attr=None,
                 bias_x_attr=None,
                 moving_mean_x_name=None,
                 moving_var_x_name=None,
                 num_channels_z=1,
                 stride_z=1,
                 filter_z_attr=None,
                 scale_z_attr=None,
                 bias_z_attr=None,
                 moving_mean_z_name=None,
                 moving_var_z_name=None):
        super(ResNetUnit, self).__init__()
        self._stride = stride
        self._stride_z = stride_z
        self._dilation = 1
        self._kernel_size = utils.convert_to_list(filter_size, 2, 'kernel_size')
        self._padding = (filter_size - 1) // 2
        self._groups = 1
        self._momentum = momentum
        self._eps = eps
        self._data_format = data_format
        self._act = act
        self._fuse_add = fuse_add
        self._has_shortcut = has_shortcut
        self._use_global_stats = use_global_stats
        self._is_test = is_test

        # check format
        valid_format = {'NHWC'}
        if data_format not in valid_format:
            raise ValueError(
                "conv_format must be one of {}, but got conv_format='{}'".
                format(valid_format, data_format))

        def _get_default_param_initializer(channels):
            filter_elem_num = np.prod(self._kernel_size) * channels
            std = (2.0 / filter_elem_num)**0.5
            return I.Normal(0.0, std)

        # initial filter
        bn_param_dtype = fluid.core.VarDesc.VarType.FP32
        bn_param_shape = [1, 1, 1, num_filters]
        filter_x_shape = [num_filters, filter_size, filter_size, num_channels_x]
        filter_z_shape = [num_filters, filter_size, filter_size, num_channels_z]

        self.filter_x = self.create_parameter(
190
            shape=filter_x_shape, attr=filter_x_attr, default_initializer=None)
Z
Zhang Zheng 已提交
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
        self.scale_x = self.create_parameter(
            shape=bn_param_shape,
            attr=scale_x_attr,
            dtype=bn_param_dtype,
            default_initializer=I.Constant(1.0))
        self.bias_x = self.create_parameter(
            shape=bn_param_shape,
            attr=bias_x_attr,
            dtype=bn_param_dtype,
            is_bias=True)
        self.mean_x = self.create_parameter(
            attr=ParamAttr(
                name=moving_mean_x_name,
                initializer=I.Constant(0.0),
                trainable=False),
            shape=bn_param_shape,
            dtype=bn_param_dtype)
        self.mean_x.stop_gradient = True
        self.var_x = self.create_parameter(
            attr=ParamAttr(
                name=moving_var_x_name,
                initializer=I.Constant(1.0),
                trainable=False),
            shape=bn_param_shape,
            dtype=bn_param_dtype)
        self.var_x.stop_gradient = True
        if has_shortcut:
            self.filter_z = self.create_parameter(
                shape=filter_z_shape,
                attr=filter_z_attr,
221
                default_initializer=None)
Z
Zhang Zheng 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
            self.scale_z = self.create_parameter(
                shape=bn_param_shape,
                attr=scale_z_attr,
                dtype=bn_param_dtype,
                default_initializer=I.Constant(1.0))
            self.bias_z = self.create_parameter(
                shape=bn_param_shape,
                attr=bias_z_attr,
                dtype=bn_param_dtype,
                is_bias=True)
            self.mean_z = self.create_parameter(
                attr=ParamAttr(
                    name=moving_mean_z_name,
                    initializer=I.Constant(0.0),
                    trainable=False),
                shape=bn_param_shape,
                dtype=bn_param_dtype)
            self.mean_z.stop_gradient = True
            self.var_z = self.create_parameter(
                attr=ParamAttr(
                    name=moving_var_z_name,
                    initializer=I.Constant(1.0),
                    trainable=False),
                shape=bn_param_shape,
                dtype=bn_param_dtype)
            self.var_z.stop_gradient = True
        else:
            self.filter_z = None
            self.scale_z = None
            self.bias_z = None
            self.mean_z = None
            self.var_z = None

    def forward(self, x, z=None):
        if self._fuse_add and z is None:
            raise ValueError("z can not be None")

        out = resnet_unit(
            x, self.filter_x, self.scale_x, self.bias_x, self.mean_x,
            self.var_x, z, self.filter_z, self.scale_z, self.bias_z,
            self.mean_z, self.var_z, self._stride, self._stride_z,
            self._padding, self._dilation, self._groups, self._momentum,
            self._eps, self._data_format, self._fuse_add, self._has_shortcut,
            self._use_global_stats, self._is_test, self._act)
        return out