Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
12882b2f
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
12882b2f
编写于
10月 15, 2021
作者:
Z
Zhang Zheng
提交者:
GitHub
10月 15, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add ResNetUnit Python API (#35426)
上级
2de0b58e
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
289 addition
and
14 deletion
+289
-14
paddle/fluid/framework/ir/memory_optimize_pass/inplace_addto_op_pass.cc
...ramework/ir/memory_optimize_pass/inplace_addto_op_pass.cc
+6
-3
paddle/fluid/operators/fused/resnet_unit_op.cc
paddle/fluid/operators/fused/resnet_unit_op.cc
+3
-2
paddle/fluid/operators/fused/resnet_unit_op.cu
paddle/fluid/operators/fused/resnet_unit_op.cu
+10
-9
python/paddle/incubate/operators/__init__.py
python/paddle/incubate/operators/__init__.py
+1
-0
python/paddle/incubate/operators/resnet_unit.py
python/paddle/incubate/operators/resnet_unit.py
+269
-0
未找到文件。
paddle/fluid/framework/ir/memory_optimize_pass/inplace_addto_op_pass.cc
浏览文件 @
12882b2f
...
...
@@ -179,7 +179,8 @@ void InplaceAddToOpPass::Run(Graph *graph) const {
out_var_ptr
->
GeneratedOp
());
// NOTE(zhiqiu): currently, only conv2d_grad supports addto strategy
if
(
right_generated_op
->
Name
()
!=
"conv2d_grad"
)
{
if
(
right_generated_op
->
Name
()
!=
"conv2d_grad"
&&
right_generated_op
->
Name
()
!=
"resnet_unit_grad"
)
{
continue
;
}
...
...
@@ -224,11 +225,13 @@ static bool IsValidConv2DGradDataGradNode(const Node &node) {
if
(
node
.
inputs
.
empty
())
return
false
;
auto
*
generated_op
=
node
.
inputs
[
0
];
auto
*
op_desc
=
generated_op
->
Op
();
if
(
op_desc
==
nullptr
||
op_desc
->
Type
()
!=
"conv2d_grad"
)
{
if
(
op_desc
==
nullptr
||
(
op_desc
->
Type
()
!=
"conv2d_grad"
&&
op_desc
->
Type
()
!=
"resnet_unit_grad"
))
{
return
false
;
}
const
auto
&
outputs
=
op_desc
->
Outputs
();
auto
iter
=
outputs
.
find
(
GradVarName
(
"Input"
));
std
::
string
grad_var_name
=
op_desc
->
Type
()
==
"conv2d_grad"
?
"Input"
:
"X"
;
auto
iter
=
outputs
.
find
(
GradVarName
(
grad_var_name
));
return
iter
!=
outputs
.
end
()
&&
!
iter
->
second
.
empty
()
&&
iter
->
second
[
0
]
==
node
.
Name
()
&&
!
op_desc
->
GetAttrIfExists
<
bool
>
(
"use_addto"
);
...
...
paddle/fluid/operators/fused/resnet_unit_op.cc
浏览文件 @
12882b2f
...
...
@@ -232,13 +232,14 @@ class ResNetUnitOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, default false) Set to true for inference only, false "
"for training. Some layers may run faster when this is true."
)
.
SetDefault
(
false
);
AddAttr
<
bool
>
(
"use_addto"
,
""
).
SetDefault
(
false
);
AddAttr
<
std
::
string
>
(
"act_type"
,
"The activation type to be fused."
)
.
SetDefault
(
"relu"
);
AddComment
(
R"DOC(
Fusion op of the basic unit of resnet block.
Fusion op of the basic unit of resnet block.
The implementation is based on the latest fusion op interface in cuDNN v8.0.
For more details:
For more details:
https://docs.nvidia.com/deeplearning/cudnn/api/index.html#cudnnFusedOps_t
)DOC"
);
...
...
paddle/fluid/operators/fused/resnet_unit_op.cu
浏览文件 @
12882b2f
...
...
@@ -55,7 +55,7 @@ class ResNetUnitKernel : public framework::OpKernel<T> {
int
padding
=
ctx
.
Attr
<
int
>
(
"padding"
);
int
stride
=
ctx
.
Attr
<
int
>
(
"stride"
);
int
stride_z
=
ctx
.
Attr
<
int
>
(
"stride_z"
);
int
dilat
e
=
ctx
.
Attr
<
int
>
(
"dilate
"
);
int
dilat
ion
=
ctx
.
Attr
<
int
>
(
"dilation
"
);
int
group
=
ctx
.
Attr
<
int
>
(
"group"
);
double
eps
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
double
momentum
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"momentum"
));
...
...
@@ -87,7 +87,7 @@ class ResNetUnitKernel : public framework::OpKernel<T> {
sum_x
.
Resize
(
param_dims
);
sum_of_squares_x
.
Resize
(
param_dims
);
CudnnNormConvolution
<
T
>
conv_x_op
(
dev_ctx
,
input_x_shape
,
filter_x_shape
,
output_shape
,
padding
,
stride
,
dilat
e
,
output_shape
,
padding
,
stride
,
dilat
ion
,
group
);
conv_x_op
.
Forward
(
dev_ctx
,
*
input_x
,
*
filter_x
,
conv_out_x
,
&
sum_x
,
&
sum_of_squares_x
);
...
...
@@ -129,8 +129,8 @@ class ResNetUnitKernel : public framework::OpKernel<T> {
sum_z
.
Resize
(
param_dims
);
sum_of_squares_z
.
Resize
(
param_dims
);
CudnnNormConvolution
<
T
>
conv_z_op
(
dev_ctx
,
input_z_shape
,
filter_z_shape
,
output_shape
,
padding
,
stride_z
,
dilate
,
group
);
output_shape
,
padding
,
stride_z
,
dilation
,
group
);
conv_z_op
.
Forward
(
dev_ctx
,
*
input_z
,
*
filter_z
,
conv_out_z
,
&
sum_z
,
&
sum_of_squares_z
);
...
...
@@ -189,7 +189,7 @@ class ResNetUnitGradKernel : public framework::OpKernel<T> {
int
padding
=
ctx
.
Attr
<
int
>
(
"padding"
);
int
stride
=
ctx
.
Attr
<
int
>
(
"stride"
);
int
stride_z
=
ctx
.
Attr
<
int
>
(
"stride_z"
);
int
dilat
e
=
ctx
.
Attr
<
int
>
(
"dilate
"
);
int
dilat
ion
=
ctx
.
Attr
<
int
>
(
"dilation
"
);
int
group
=
ctx
.
Attr
<
int
>
(
"group"
);
double
eps
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"epsilon"
));
double
momentum
=
static_cast
<
double
>
(
ctx
.
Attr
<
float
>
(
"momentum"
));
...
...
@@ -263,7 +263,7 @@ class ResNetUnitGradKernel : public framework::OpKernel<T> {
auto
filter_z_shape
=
framework
::
vectorize
<
int
>
(
filter_z
->
dims
());
CudnnNormConvolutionGrad
<
T
>
conv_z_op
(
dev_ctx
,
z_shape
,
filter_z_shape
,
output_shape
,
padding
,
stride_z
,
dilat
e
,
group
);
dilat
ion
,
group
);
conv_z_op
.
Backward
(
dev_ctx
,
*
z
,
*
filter_z
,
conv_out_z_grad
,
z_grad
,
filter_z_grad
);
}
else
{
...
...
@@ -278,11 +278,12 @@ class ResNetUnitGradKernel : public framework::OpKernel<T> {
}
// 2. Backward of Conv for x, get x_grad and filter_x_grad
bool
use_addto
=
ctx
.
Attr
<
bool
>
(
"use_addto"
);
CudnnNormConvolutionGrad
<
T
>
conv_x_op
(
dev_ctx
,
x_shape
,
filter_x_shape
,
output_shape
,
padding
,
stride
,
dilate
,
group
);
output_shape
,
padding
,
stride
,
dilation
,
group
);
conv_x_op
.
Backward
(
dev_ctx
,
*
x
,
*
filter_x
,
conv_out_x_grad
,
x_grad
,
filter_x_grad
);
filter_x_grad
,
use_addto
);
}
};
...
...
python/paddle/incubate/operators/__init__.py
浏览文件 @
12882b2f
...
...
@@ -14,3 +14,4 @@
from
.softmax_mask_fuse_upper_triangle
import
softmax_mask_fuse_upper_triangle
# noqa: F401
from
.softmax_mask_fuse
import
softmax_mask_fuse
# noqa: F401
from
.resnet_unit
import
ResNetUnit
#noqa: F401
python/paddle/incubate/operators/resnet_unit.py
0 → 100644
浏览文件 @
12882b2f
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
copy
import
collections
import
itertools
import
six
import
math
import
sys
import
warnings
from
functools
import
partial
,
reduce
import
numpy
as
np
import
paddle
import
paddle.fluid
as
fluid
from
paddle
import
framework
from
paddle.device
import
get_device
,
get_cudnn_version
from
paddle.nn
import
initializer
as
I
from
paddle.nn
import
Layer
,
LayerList
from
paddle.fluid.layers
import
utils
from
paddle.fluid.layer_helper
import
LayerHelper
from
paddle.fluid.layers.utils
import
map_structure
,
flatten
,
pack_sequence_as
from
paddle.fluid.data_feeder
import
convert_dtype
from
paddle.fluid.param_attr
import
ParamAttr
from
paddle
import
_C_ops
__all__
=
[
'resnet_unit'
,
'ResNetUnit'
]
def
resnet_unit
(
x
,
filter_x
,
scale_x
,
bias_x
,
mean_x
,
var_x
,
z
,
filter_z
,
scale_z
,
bias_z
,
mean_z
,
var_z
,
stride
,
stride_z
,
padding
,
dilation
,
groups
,
momentum
,
eps
,
data_format
,
fuse_add
,
has_shortcut
,
use_global_stats
,
is_test
,
act
):
helper
=
LayerHelper
(
'resnet_unit'
,
**
locals
())
bn_param_dtype
=
fluid
.
core
.
VarDesc
.
VarType
.
FP32
bit_mask_dtype
=
fluid
.
core
.
VarDesc
.
VarType
.
INT32
out
=
helper
.
create_variable_for_type_inference
(
x
.
dtype
)
bit_mask
=
helper
.
create_variable_for_type_inference
(
dtype
=
bit_mask_dtype
,
stop_gradient
=
True
)
# intermediate_out for x
conv_x
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
,
stop_gradient
=
True
)
saved_mean_x
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
saved_invstd_x
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
running_mean_x
=
mean_x
running_var_x
=
var_x
# intermediate_out for z
conv_z
=
helper
.
create_variable_for_type_inference
(
dtype
=
x
.
dtype
,
stop_gradient
=
True
)
saved_mean_z
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
saved_invstd_z
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
running_mean_z
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
if
mean_z
is
None
else
mean_z
running_var_z
=
helper
.
create_variable_for_type_inference
(
dtype
=
bn_param_dtype
,
stop_gradient
=
True
)
if
var_z
is
None
else
var_z
inputs
=
{
'X'
:
x
,
'FilterX'
:
filter_x
,
'ScaleX'
:
scale_x
,
'BiasX'
:
bias_x
,
'MeanX'
:
mean_x
,
'VarX'
:
var_x
,
'Z'
:
z
,
'FilterZ'
:
filter_z
,
'ScaleZ'
:
scale_z
,
'BiasZ'
:
bias_z
,
'MeanZ'
:
mean_z
,
'VarZ'
:
var_z
}
attrs
=
{
'stride'
:
stride
,
'stride_z'
:
stride_z
,
'padding'
:
padding
,
'dilation'
:
dilation
,
'group'
:
groups
,
'momentum'
:
momentum
,
'epsilon'
:
eps
,
'data_format'
:
data_format
,
'fuse_add'
:
fuse_add
,
'has_shortcut'
:
has_shortcut
,
'use_global_stats'
:
use_global_stats
,
'is_test'
:
is_test
,
'act_type'
:
act
}
outputs
=
{
'Y'
:
out
,
'BitMask'
:
bit_mask
,
'ConvX'
:
conv_x
,
'SavedMeanX'
:
saved_mean_x
,
'SavedInvstdX'
:
saved_invstd_x
,
'RunningMeanX'
:
running_mean_x
,
'RunningVarX'
:
running_var_x
,
'ConvZ'
:
conv_z
,
'SavedMeanZ'
:
saved_mean_z
,
'SavedInvstdZ'
:
saved_invstd_z
,
'RunningMeanZ'
:
running_mean_z
,
'RunningVarZ'
:
running_var_z
,
}
helper
.
append_op
(
type
=
'resnet_unit'
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
attrs
)
return
out
class
ResNetUnit
(
Layer
):
r
"""
******Temporary version******.
ResNetUnit is designed for optimize the performence by using cudnnv8 API.
"""
def
__init__
(
self
,
num_channels_x
,
num_filters
,
filter_size
,
stride
=
1
,
momentum
=
0.9
,
eps
=
1e-5
,
data_format
=
'NHWC'
,
act
=
'relu'
,
fuse_add
=
False
,
has_shortcut
=
False
,
use_global_stats
=
False
,
is_test
=
False
,
filter_x_attr
=
None
,
scale_x_attr
=
None
,
bias_x_attr
=
None
,
moving_mean_x_name
=
None
,
moving_var_x_name
=
None
,
num_channels_z
=
1
,
stride_z
=
1
,
filter_z_attr
=
None
,
scale_z_attr
=
None
,
bias_z_attr
=
None
,
moving_mean_z_name
=
None
,
moving_var_z_name
=
None
):
super
(
ResNetUnit
,
self
).
__init__
()
self
.
_stride
=
stride
self
.
_stride_z
=
stride_z
self
.
_dilation
=
1
self
.
_kernel_size
=
utils
.
convert_to_list
(
filter_size
,
2
,
'kernel_size'
)
self
.
_padding
=
(
filter_size
-
1
)
//
2
self
.
_groups
=
1
self
.
_momentum
=
momentum
self
.
_eps
=
eps
self
.
_data_format
=
data_format
self
.
_act
=
act
self
.
_fuse_add
=
fuse_add
self
.
_has_shortcut
=
has_shortcut
self
.
_use_global_stats
=
use_global_stats
self
.
_is_test
=
is_test
# check format
valid_format
=
{
'NHWC'
}
if
data_format
not
in
valid_format
:
raise
ValueError
(
"conv_format must be one of {}, but got conv_format='{}'"
.
format
(
valid_format
,
data_format
))
def
_get_default_param_initializer
(
channels
):
filter_elem_num
=
np
.
prod
(
self
.
_kernel_size
)
*
channels
std
=
(
2.0
/
filter_elem_num
)
**
0.5
return
I
.
Normal
(
0.0
,
std
)
# initial filter
bn_param_dtype
=
fluid
.
core
.
VarDesc
.
VarType
.
FP32
bn_param_shape
=
[
1
,
1
,
1
,
num_filters
]
filter_x_shape
=
[
num_filters
,
filter_size
,
filter_size
,
num_channels_x
]
filter_z_shape
=
[
num_filters
,
filter_size
,
filter_size
,
num_channels_z
]
self
.
filter_x
=
self
.
create_parameter
(
shape
=
filter_x_shape
,
attr
=
filter_x_attr
,
default_initializer
=
_get_default_param_initializer
(
num_channels_x
))
self
.
scale_x
=
self
.
create_parameter
(
shape
=
bn_param_shape
,
attr
=
scale_x_attr
,
dtype
=
bn_param_dtype
,
default_initializer
=
I
.
Constant
(
1.0
))
self
.
bias_x
=
self
.
create_parameter
(
shape
=
bn_param_shape
,
attr
=
bias_x_attr
,
dtype
=
bn_param_dtype
,
is_bias
=
True
)
self
.
mean_x
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
moving_mean_x_name
,
initializer
=
I
.
Constant
(
0.0
),
trainable
=
False
),
shape
=
bn_param_shape
,
dtype
=
bn_param_dtype
)
self
.
mean_x
.
stop_gradient
=
True
self
.
var_x
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
moving_var_x_name
,
initializer
=
I
.
Constant
(
1.0
),
trainable
=
False
),
shape
=
bn_param_shape
,
dtype
=
bn_param_dtype
)
self
.
var_x
.
stop_gradient
=
True
if
has_shortcut
:
self
.
filter_z
=
self
.
create_parameter
(
shape
=
filter_z_shape
,
attr
=
filter_z_attr
,
default_initializer
=
_get_default_param_initializer
(
num_channels_z
))
self
.
scale_z
=
self
.
create_parameter
(
shape
=
bn_param_shape
,
attr
=
scale_z_attr
,
dtype
=
bn_param_dtype
,
default_initializer
=
I
.
Constant
(
1.0
))
self
.
bias_z
=
self
.
create_parameter
(
shape
=
bn_param_shape
,
attr
=
bias_z_attr
,
dtype
=
bn_param_dtype
,
is_bias
=
True
)
self
.
mean_z
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
moving_mean_z_name
,
initializer
=
I
.
Constant
(
0.0
),
trainable
=
False
),
shape
=
bn_param_shape
,
dtype
=
bn_param_dtype
)
self
.
mean_z
.
stop_gradient
=
True
self
.
var_z
=
self
.
create_parameter
(
attr
=
ParamAttr
(
name
=
moving_var_z_name
,
initializer
=
I
.
Constant
(
1.0
),
trainable
=
False
),
shape
=
bn_param_shape
,
dtype
=
bn_param_dtype
)
self
.
var_z
.
stop_gradient
=
True
else
:
self
.
filter_z
=
None
self
.
scale_z
=
None
self
.
bias_z
=
None
self
.
mean_z
=
None
self
.
var_z
=
None
def
forward
(
self
,
x
,
z
=
None
):
if
self
.
_fuse_add
and
z
is
None
:
raise
ValueError
(
"z can not be None"
)
out
=
resnet_unit
(
x
,
self
.
filter_x
,
self
.
scale_x
,
self
.
bias_x
,
self
.
mean_x
,
self
.
var_x
,
z
,
self
.
filter_z
,
self
.
scale_z
,
self
.
bias_z
,
self
.
mean_z
,
self
.
var_z
,
self
.
_stride
,
self
.
_stride_z
,
self
.
_padding
,
self
.
_dilation
,
self
.
_groups
,
self
.
_momentum
,
self
.
_eps
,
self
.
_data_format
,
self
.
_fuse_add
,
self
.
_has_shortcut
,
self
.
_use_global_stats
,
self
.
_is_test
,
self
.
_act
)
return
out
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录