engine_api.py 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import tempfile
16 17 18 19 20
import os
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
21
from paddle.io import Dataset
22

23
from paddle.distributed.fleet import auto
24 25 26 27 28 29 30 31 32 33 34 35 36 37

paddle.enable_static()
global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
PP_MESH_0 = auto.ProcessMesh([0])
PP_MESH_1 = auto.ProcessMesh([1])
batch_size = 1
batch_num = 10
hidden_size = 1024
sequence_len = 512
image_size = hidden_size
class_num = 10

paddle.seed(44)

38 39
is_fetch = True

40 41

class MyDataset(Dataset):
42

43 44 45 46 47 48 49 50 51 52 53 54 55 56
    def __init__(self, num_samples):
        super(MyDataset, self).__init__()
        self.num_samples = num_samples

    def __getitem__(self, index):
        input = np.random.uniform(size=image_size).astype("float32")
        label = np.random.randint(0, class_num - 1, dtype="int64")
        return input, label

    def __len__(self):
        return self.num_samples


class MLPLayer(nn.Layer):
57

58 59 60 61 62 63 64 65
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 dropout_ratio=0.1,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
66 67
        weight_attr = paddle.ParamAttr(
            initializer=nn.initializer.Normal(mean=0.0, std=initializer_range))
68 69
        bias_attr = None

70 71 72 73 74 75 76 77
        self.linear0 = nn.Linear(d_model,
                                 dim_feedforward,
                                 weight_attr,
                                 bias_attr=bias_attr)
        self.linear1 = nn.Linear(dim_feedforward,
                                 d_model,
                                 weight_attr,
                                 bias_attr=bias_attr)
78 79 80 81 82
        self.linear2 = nn.Linear(d_model, 1, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)
        self.dropout = nn.Dropout(dropout_ratio, mode="upscale_in_train")

    def forward(self, input):
83
        out = auto.shard_op(self.norm, PP_MESH_0)(input)
84
        out = self.linear0(out)
85
        out = F.gelu(out, approximate=True)
86
        out = auto.shard_op(self.linear1, PP_MESH_1)(out)
87 88
        out = self.dropout(out)
        out = self.linear2(out)
89
        if is_fetch:
90
            auto.fetch(out, "my_out", logging=True)
91 92 93
        return out


94
def train(fetch):
95 96
    global is_fetch
    is_fetch = fetch
97 98 99 100
    mlp = MLPLayer(hidden_size=hidden_size,
                   intermediate_size=4 * hidden_size,
                   dropout_ratio=0.1,
                   initializer_range=0.02)
101
    loss = paddle.nn.CrossEntropyLoss()
102
    optimizer = paddle.optimizer.Adam(learning_rate=0.00001,
103 104 105 106
                                      beta1=0.9,
                                      beta2=0.999,
                                      epsilon=1e-08,
                                      grad_clip=None)
107
    metric = paddle.metric.Accuracy()
108

109 110
    strategy = auto.Strategy()
    strategy.auto_mode = "semi"
111

112
    engine = auto.Engine(mlp, loss, optimizer, metric, strategy=strategy)
113

114 115
    # train
    train_dataset = MyDataset(batch_num * batch_size)
116 117 118
    eval_dataset1 = MyDataset(5 * batch_size)
    engine.fit(train_data=train_dataset,
               epochs=2,
119
               batch_size=batch_size,
120
               valid_data=eval_dataset1)
121

122
    # eval
123 124
    eval_dataset2 = MyDataset(batch_size)
    engine.evaluate(eval_dataset2, batch_size=batch_size)
125

126
    # predict
127
    test_dataset = MyDataset(batch_size)
128
    engine.predict(test_dataset, batch_size=batch_size)
129 130

    # save
131
    temp_dir = tempfile.TemporaryDirectory()
132 133 134
    model_filename = os.path.join(temp_dir.name, 'mlp')
    engine.save(model_filename, training=True)
    engine.load(model_filename)
135
    temp_dir.cleanup()
136 137


138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
def train_callable():
    mlp = MLPLayer(hidden_size=hidden_size,
                   intermediate_size=4 * hidden_size,
                   dropout_ratio=0.1,
                   initializer_range=0.02)
    loss = paddle.nn.CrossEntropyLoss()
    optimizer = paddle.optimizer.Adam(learning_rate=0.00001,
                                      beta1=0.9,
                                      beta2=0.999,
                                      epsilon=1e-08,
                                      grad_clip=None)
    metric = paddle.metric.Accuracy()

    strategy = auto.Strategy()
    strategy.auto_mode = "semi"

    engine = auto.Engine(mlp, loss, optimizer, metric, strategy=strategy)

    # train
    train_dataset = MyDataset(batch_num * batch_size)
    train_dataloader = engine.dataloader(train_dataset,
                                         batch_size=batch_size,
                                         mode="train")
    for _ in train_dataloader:
        outs = engine(mode="train")

    # eval
    eval_dataset2 = MyDataset(batch_size)
    eval_dataloader = engine.dataloader(eval_dataset2,
                                        batch_size=batch_size,
                                        mode="eval")
    for _ in eval_dataloader:
        outs = engine(mode="eval")

    # predict
    test_dataset = MyDataset(batch_size)
    predict_dataloader = engine.dataloader(test_dataset,
                                           batch_size=batch_size,
                                           mode="predict")
    for _ in predict_dataloader:
        outs = engine(mode="predict")

    # save
    temp_dir = tempfile.TemporaryDirectory()
    model_filename = os.path.join(temp_dir.name, 'mlp')
    engine.save(model_filename, training=True)
    engine.load(model_filename)
    temp_dir.cleanup()


188
if __name__ == "__main__":
189 190
    train(fetch=True)
    train(fetch=False)
191
    train_callable()