activation_op.cc 42.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
T
tink2123 已提交
16
#include <memory>
D
dzhwinter 已提交
17
#include <string>
18
#include <type_traits>
T
tink2123 已提交
19
#include <unordered_map>
20
#include <vector>
21
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
22
#include "paddle/fluid/platform/port.h"
23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
Q
qijun 已提交
26

A
Adam 已提交
27 28
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
29 30 31
namespace paddle {
namespace operators {

32 33
using paddle::framework::Tensor;

34 35 36 37 38
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

39 40 41 42 43
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
44 45 46 47 48
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
49 50 51 52 53 54 55 56 57 58 59 60 61 62
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
          .SetDefault(false);                                                \
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
          .SetDefault(false);                                                \
      AddAttr<bool>(                                                         \
          "is_test",                                                         \
          "(bool, default false) Set to true for inference only, false "     \
          "for training. Some layers may run faster when this is true.")     \
          .SetDefault(false);                                                \
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
63
  }
D
dzhwinter 已提交
64

H
hong 已提交
65 66
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
67
 public:
H
hong 已提交
68
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
69 70

 protected:
71
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
72 73 74 75
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
76

A
Adam 已提交
77 78 79 80
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
        FLAGS_use_mkldnn || (op->HasAttr("use_mkldnn") &&
                             boost::get<bool>(op->GetAttr("use_mkldnn")))) {
H
hong 已提交
81
      op->SetInput("X", this->Input("X"));
82 83 84 85
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
H
hong 已提交
86
      op->SetInput("Out", this->Output("Out"));
87
    }
D
dzhwinter 已提交
88
  }
89
};
D
dzhwinter 已提交
90

91 92 93 94
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
95
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
96 97 98 99 100 101 102 103 104 105
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
106 107 108 109 110
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
111
    layout = framework::DataLayout::kMKLDNN;
112 113
  }
#endif
114 115
  return framework::OpKernelType(oper.IndicateVarDataType(ctx, name),
                                 ctx.GetPlace(), layout, library);
116 117
}

Q
qijun 已提交
118 119 120 121
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

122
  void InferShape(framework::InferShapeContext* ctx) const override {
123
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
124
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
125
  }
126

127
 protected:
128 129 130 131
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
132 133
};

C
chengduo 已提交
134 135 136 137 138 139
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
140 141 142
  }
};

Q
qijun 已提交
143 144 145 146
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

147
  void InferShape(framework::InferShapeContext* ctx) const override {
148 149 150
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
151
  }
152

153
 protected:
154 155
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
156
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
157
  }
Q
qijun 已提交
158 159
};

D
dzhwinter 已提交
160
UNUSED constexpr char SigmoidDoc[] = R"DOC(
161
Sigmoid Activation Operator
K
Kexin Zhao 已提交
162

163
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
164

D
dzhwinter 已提交
165
)DOC";
Q
qijun 已提交
166

D
dzhwinter 已提交
167
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
168
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
169

170
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
171

D
dzhwinter 已提交
172
)DOC";
173

D
dzhwinter 已提交
174
UNUSED constexpr char ExpDoc[] = R"DOC(
175
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
176

F
fengjiayi 已提交
177
$out = e^x$
K
Kexin Zhao 已提交
178

D
dzhwinter 已提交
179
)DOC";
Q
qijun 已提交
180

D
dzhwinter 已提交
181
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
182
Relu Activation Operator.
K
Kexin Zhao 已提交
183

F
fengjiayi 已提交
184
$out = \max(x, 0)$
K
Kexin Zhao 已提交
185

D
dzhwinter 已提交
186
)DOC";
K
Kexin Zhao 已提交
187

D
dzhwinter 已提交
188
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
189
Tanh Activation Operator.
K
Kexin Zhao 已提交
190

Q
update  
qiaolongfei 已提交
191
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
192

D
dzhwinter 已提交
193
)DOC";
194

D
dzhwinter 已提交
195
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
196
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
197

Y
Yan Chunwei 已提交
198
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
199

D
dzhwinter 已提交
200
)DOC";
K
Kexin Zhao 已提交
201

D
dzhwinter 已提交
202
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
203
Sqrt Activation Operator.
K
Kexin Zhao 已提交
204

205
.. math:: out=\sqrt x=x^{1/2}
206

207 208
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
209

D
dzhwinter 已提交
210
)DOC";
211

Z
zhoukunsheng 已提交
212 213 214 215 216 217 218 219 220
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

$out = \frac{1}{\sqrt{x}}$

)DOC";

D
dzhwinter 已提交
221
UNUSED constexpr char AbsDoc[] = R"DOC(
K
kexinzhao 已提交
222
Abs Activation Operator.
K
Kexin Zhao 已提交
223

F
fengjiayi 已提交
224
$out = |x|$
K
Kexin Zhao 已提交
225

D
dzhwinter 已提交
226
)DOC";
227

D
dzhwinter 已提交
228
UNUSED constexpr char CeilDoc[] = R"DOC(
229
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
230

231
$out = \left \lceil x \right \rceil$
D
dzhwinter 已提交
232

D
dzhwinter 已提交
233
)DOC";
D
dzhwinter 已提交
234

D
dzhwinter 已提交
235
UNUSED constexpr char FloorDoc[] = R"DOC(
D
dzhwinter 已提交
236 237
Floor Activation Operator.

238
$out = \left \lfloor x \right \rfloor$
D
dzhwinter 已提交
239

D
dzhwinter 已提交
240
)DOC";
D
dzhwinter 已提交
241

D
dzhwinter 已提交
242
UNUSED constexpr char CosDoc[] = R"DOC(
243
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
244 245 246

$out = cos(x)$

D
dzhwinter 已提交
247
)DOC";
C
add cos  
chengduoZH 已提交
248

D
dzhwinter 已提交
249
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
250 251 252 253
Sine Activation Operator.

$out = sin(x)$

D
dzhwinter 已提交
254
)DOC";
C
add sin  
chengduoZH 已提交
255

D
dzhwinter 已提交
256
UNUSED constexpr char RoundDoc[] = R"DOC(
257
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
258

259 260 261 262 263 264 265 266 267
.. code-block:: python

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
268

D
dzhwinter 已提交
269
)DOC";
D
dzhwinter 已提交
270

D
dzhwinter 已提交
271
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
272
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
273

274
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
275

D
dzhwinter 已提交
276
)DOC";
277

D
dzhwinter 已提交
278
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
279
Log Activation Operator.
K
Kexin Zhao 已提交
280

F
fengjiayi 已提交
281
$out = \ln(x)$
K
Kexin Zhao 已提交
282 283 284

Natural logarithm of x.

D
dzhwinter 已提交
285 286
)DOC";

D
dzhwinter 已提交
287
UNUSED constexpr char SquareDoc[] = R"DOC(
288
The OP square each elements of the inputs.
D
dzhwinter 已提交
289 290

$out = x^2$
291

D
dzhwinter 已提交
292 293
)DOC";

D
dzhwinter 已提交
294
UNUSED constexpr char SoftplusDoc[] = R"DOC(
D
dzhwinter 已提交
295 296 297 298 299 300
Softplus Activation Operator.

$out = \ln(1 + e^{x})$

)DOC";

D
dzhwinter 已提交
301
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
302 303
Softsign Activation Operator.

304
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
305 306 307

)DOC";

T
tink2123 已提交
308 309 310 311 312 313
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
314 315
Arccosine Activation Operator.

T
tink2123 已提交
316
$$out = \cos^{-1}(x)$$
317

T
tink2123 已提交
318 319 320
)DOC");
  }
};
321

T
tink2123 已提交
322 323 324 325 326 327
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of asin operator");
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
328 329
Arcsine Activation Operator.

T
tink2123 已提交
330
$$out = \sin^{-1}(x)$$
331

T
tink2123 已提交
332 333 334
)DOC");
  }
};
335

T
tink2123 已提交
336 337 338 339 340 341
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of atan operator");
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
342 343
Arctanh Activation Operator.

T
tink2123 已提交
344
$$out = \tanh^{-1}(x)$$
345

T
tink2123 已提交
346 347 348
)DOC");
  }
};
349

D
dzhwinter 已提交
350
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
351
 public:
Y
Yu Yang 已提交
352
  void Make() override {
W
Wilber 已提交
353 354 355 356 357 358 359 360
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
361 362 363 364 365 366 367
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
K
Kexin Zhao 已提交
368
    AddComment(R"DOC(
D
dzhwinter 已提交
369
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
370

W
Wilber 已提交
371
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
372 373

)DOC");
374 375 376
  }
};

D
dzhwinter 已提交
377
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
378
 public:
Y
Yu Yang 已提交
379
  void Make() override {
D
dzhwinter 已提交
380 381 382
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
383
    AddComment(R"DOC(
384 385 386
:strong:`Softshrink Activation Operator`

..  math::
387
    out = \begin{cases}
388 389 390 391
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
392 393

)DOC");
K
kexinzhao 已提交
394 395 396
  }
};

D
dzhwinter 已提交
397
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
398
 public:
Y
Yu Yang 已提交
399
  void Make() override {
D
dzhwinter 已提交
400 401
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
402 403
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
404
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
405
    AddComment(R"DOC(
Y
yuyang18 已提交
406
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
407

Y
yuyang18 已提交
408 409 410 411 412 413
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
414 415

)DOC");
416 417 418
  }
};

419 420
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
421
  void Make() override {
422 423 424 425 426 427
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
428 429 430 431
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
432
    AddComment(R"DOC(
K
kexinzhao 已提交
433
BRelu Activation Operator.
K
Kexin Zhao 已提交
434

435
$out = \min(\max(x, t_{min}), t_{max})$
K
Kexin Zhao 已提交
436 437

)DOC");
438 439 440 441 442
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
443
  void Make() override {
444
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
445
    AddOutput("Out", "Output of SoftRelu operator");
446 447
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
448
    AddComment(R"DOC(
K
kexinzhao 已提交
449
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
450

T
tensor-tang 已提交
451
$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$
K
Kexin Zhao 已提交
452 453

)DOC");
454 455 456
  }
};

457 458
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
459
  void Make() override {
460 461 462 463 464 465
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
466
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
467
    AddComment(R"DOC(
K
kexinzhao 已提交
468
ELU Activation Operator.
K
Kexin Zhao 已提交
469 470 471 472

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

F
fengjiayi 已提交
473
$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$
K
Kexin Zhao 已提交
474 475

)DOC");
476 477 478
  }
};

479 480
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
481
  void Make() override {
Z
zhupengyang 已提交
482 483 484 485 486 487 488 489
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
490
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
491
    AddComment(R"DOC(
K
kexinzhao 已提交
492
Relu6 Activation Operator.
K
Kexin Zhao 已提交
493

Z
zhupengyang 已提交
494
$out = \min(\max(0, x), threshold)$
K
Kexin Zhao 已提交
495 496

)DOC");
497 498 499
  }
};

500 501
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
502
  void Make() override {
503
    AddInput("X", "Input of Pow operator");
504 505 506 507 508
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
509
    AddOutput("Out", "Output of Pow operator");
510
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
511
    AddComment(R"DOC(
K
kexinzhao 已提交
512
Pow Activation Operator.
K
Kexin Zhao 已提交
513

F
fengjiayi 已提交
514
$out = x^{factor}$
K
Kexin Zhao 已提交
515 516

)DOC");
517 518 519 520 521
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
522
  void Make() override {
523 524 525 526 527 528
    AddInput("X",
             "Input of STanh operator."
             " A LoDTensor or Tensor with type float32, float64.");
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
529 530
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
531
    AddComment(R"DOC(
K
kexinzhao 已提交
532
STanh Activation Operator.
K
Kexin Zhao 已提交
533

Y
Yan Chunwei 已提交
534
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
535 536

)DOC");
Q
qijun 已提交
537 538 539
  }
};

540 541
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
542
  void Make() override {
543
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
544
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
545 546
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
547
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
548
    AddComment(R"DOC(
Y
yuyang18 已提交
549
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
550

Y
yuyang18 已提交
551
..  math::
K
Kexin Zhao 已提交
552

Y
yuyang18 已提交
553
    out = \begin{cases}
Y
yuyang18 已提交
554
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
555 556
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
557
)DOC");
558 559 560
  }
};

561 562
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
563
  void Make() override {
564 565 566 567 568
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
569
        .SetDefault(0.2f);
570 571 572
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
573
        .SetDefault(0.5f);
574
    AddComment(R"DOC(
K
kexinzhao 已提交
575
HardSigmoid Activation Operator.
576

577
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
578
which is much faster than sigmoid.
579

580
$out = \max(0, \min(1, slope * x + offset))$
581

K
Kexin Zhao 已提交
582
)DOC");
583 584 585
  }
};

A
Abhinav Arora 已提交
586 587
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
588
  void Make() override {
A
Abhinav Arora 已提交
589
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
590
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
591 592 593 594
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
    AddComment(R"DOC(
Swish Activation Operator.

595
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
596 597 598 599 600

)DOC");
  }
};

H
huangjun12 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
627 628 629 630 631 632 633
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
634
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
635 636 637 638 639 640 641 642 643 644 645 646
REGISTER_ACTIVATION_OP_MAKER(Abs, AbsDoc);
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softplus, SoftplusDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

647
template <ActBwdOpFwdDeps kDepValue>
648 649 650 651 652
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
653
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
654
      if (ctx->HasOutput("DX")) {
655 656 657
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
658
      if (ctx->HasOutput("DDOut")) {
659 660 661
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
662
    }
663
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
664
      if (ctx->HasOutput("DOut")) {
665 666 667
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
696 697 698
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
699 700 701 702 703 704 705 706 707 708
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

709 710 711 712
//
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
//
H
hong 已提交
713 714
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
715
 public:
H
hong 已提交
716
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
717 718

 protected:
719
  void Apply(GradOpPtr<T> op) const override {
720 721
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
722
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
723
    // input2: ddx
H
hong 已提交
724 725
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
726
    // output: ddy
H
hong 已提交
727
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
728 729 730
  }
};

731 732
// leaky_relu Grad: dx=dy if y>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if y>=0 else alpha * ddx
H
hong 已提交
733
template <typename T>
734
class LeakyReluDoubleGradMaker
H
hong 已提交
735
    : public ::paddle::framework::SingleGradOpMaker<T> {
736
 public:
H
hong 已提交
737
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
738 739

 protected:
740
  void Apply(GradOpPtr<T> op) const override {
741
    op->SetType("leaky_relu_grad_grad");
Z
Zeng Jinle 已提交
742
    // input1: Out
H
hong 已提交
743
    op->SetInput("Out", this->Input("Out"));
744
    // X@GRAD@GRAD: ddx
H
hong 已提交
745 746
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
747
    // Out@GRAD@GRAD: ddy
H
hong 已提交
748
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
749 750 751
  }
};

D
Double_V 已提交
752 753 754 755 756 757 758 759
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
760
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
775 776
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
777 778
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
779
 public:
H
hong 已提交
780
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
781 782

 protected:
783
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
784
    op->SetType("sqrt_grad_grad");
H
hong 已提交
785 786 787 788 789 790
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
791 792 793
  }
};

794 795
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
796 797
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
798
 public:
H
hong 已提交
799
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
800 801

 protected:
802
  void Apply(GradOpPtr<T> op) const override {
803
    op->SetType("square_grad_grad");
H
hong 已提交
804
    op->SetInput("X", this->Input("X"));
805
    // Out@GRAD: dy
H
hong 已提交
806
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
807
    // X@GRAD@GRAD: ddx
H
hong 已提交
808
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
809

H
hong 已提交
810
    op->SetAttrMap(this->Attrs());
811 812

    // X@GRAD: dx
H
hong 已提交
813
    op->SetOutput("DX", this->InputGrad("X"));
814
    // Out@GRAD@GRAD: ddy
H
hong 已提交
815
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
816 817 818
  }
};

819 820 821
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInference,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
822 823
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInference,
                           {"DDX", "DDOut"});
824

H
hong 已提交
825 826
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
827
 public:
H
hong 已提交
828
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
829 830

 protected:
831
  void Apply(GradOpPtr<T> op) const override {
832
    op->SetType("pow_grad");
H
hong 已提交
833 834 835 836 837
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
892
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
893 894 895 896
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
897
namespace plat = paddle::platform;
898

899 900 901 902
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
903 904 905 906
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
907
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
908
                       ops::ActFwdInplaceInferer, void>::type);             \
909 910
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
                    ops::ActivationGradOpInplaceInference);
911 912 913

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
914 915 916 917 918 919 920 921 922 923
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
924
                                ops::grad_functor<double>>);
925

926 927
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
928

929
/* ==========================    relu register  ============================= */
930 931
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
932 933 934 935
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
936
    ops::ActFwdInplaceInferer);
937
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
938
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
939 940
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
941 942
REGISTER_OPERATOR(
    relu_grad_grad,
943 944
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
945 946 947 948 949 950 951 952 953 954 955

REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluFunctor, ReluGradFunctor);

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
956
/* ========================================================================== */
957

958
/* ======================== leaky relu register  ============================ */
959 960 961
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
962 963 964 965
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
966
    ops::ActFwdInplaceInferer);
967
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
968
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
969 970
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
971 972
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
973 974
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
975

976 977 978 979 980 981 982 983 984 985
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
986 987
/* ========================================================================== */

D
Double_V 已提交
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
/* ========================    elu  register     ============================ */
REGISTER_OPERATOR(
    elu, ops::ActivationOp, ops::ELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInference,
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);

REGISTER_ACTIVATION_CPU_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1016 1017 1018
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1019 1020 1021 1022
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1023
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1024
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1025
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
1026 1027
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1028 1029
REGISTER_OPERATOR(
    sqrt_grad_grad,
1030 1031 1032
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);

L
lvmengsi 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1043 1044 1045 1046
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1047 1048 1049 1050
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1051
    ops::ActFwdInplaceInferer);
1052
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1053
                  ops::ActivationGradOpInplaceInference,
H
hong 已提交
1054 1055
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1056 1057
REGISTER_OPERATOR(
    square_grad_grad,
1058 1059
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
    ops::ActivationDoubleGradOpInplaceInference);
1060

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1079 1080 1081 1082 1083 1084 1085 1086

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1087 1088 1089 1090 1091
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1092
/* ========================================================================== */
1093 1094 1095 1096 1097

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1098 1099
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1100
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1101
                     ops::ActFwdInplaceInferer, void>::type);
1102 1103 1104 1105 1106
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
                  ops::ActivationGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1107 1108 1109
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1110 1111 1112
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   abs register  ============================ */
REGISTER_OPERATOR(
    abs, ops::ActivationOp, ops::AbsOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::AbsGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(abs_grad, ops::ActivationOpGrad,
                  ops::ActivationGradOpInplaceInference);

REGISTER_OP_CPU_KERNEL(abs,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    abs_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::AbsGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int64_t>>);
1180
/* ========================================================================== */