concat.cc 4.0 KB
Newer Older
C
chengduoZH 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/concat.h"

namespace paddle {
namespace operators {
namespace math {

/*
 * All tensors' dimension should be the same.
 */
template <typename T>
class ConcatFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
C
chengduoZH 已提交
28
                  const std::vector<framework::Tensor>& input, const int axis,
C
chengduoZH 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42
                  framework::Tensor* output) {
    // assume the the max size of input is less than 8 and see the performance
    // save origin dim
    int num = input.size();
    std::vector<paddle::framework::DDim> origin_dim(num);

    // get the matrix size
    int rows = 1;
    auto dim_0 = input[0].dims();
    for (int i = 0; i < axis; ++i) {
      rows *= dim_0[i];
    }
    int out_rows = rows, out_cols = 0;

C
chengduoZH 已提交
43 44
    // get input's cols
    std::vector<int64_t> input_cols(input.size());
C
chengduoZH 已提交
45 46 47
    for (int i = 0; i < num; ++i) {
      int t_cols = input[i].numel() / rows;
      out_cols += t_cols;
C
chengduoZH 已提交
48
      input_cols[i] = t_cols;
C
chengduoZH 已提交
49 50
    }
    auto& cpu_place = boost::get<platform::CPUPlace>(context.GetPlace());
C
chengduoZH 已提交
51

C
chengduoZH 已提交
52
    // computation
C
chengduoZH 已提交
53
    for (int k = 0; k < out_rows; ++k) {
C
chengduoZH 已提交
54 55 56
      T* dst_ptr = output->data<T>() + k * out_cols;
      int col_idx = 0;
      for (int j = 0; j < num; ++j) {
C
chengduoZH 已提交
57
        int col_len = input_cols[j];
C
chengduoZH 已提交
58 59 60 61 62 63
        const T* src_prt = input[j].data<T>() + k * col_len;
        memory::Copy(cpu_place, dst_ptr + col_idx, cpu_place, src_prt,
                     sizeof(T) * col_len);
        col_idx += col_len;
      }
    }
C
chengduoZH 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76
  }
};

template <typename T>
class ConcatGradFunctor<platform::CPUDeviceContext, T> {
 public:
  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, const int axis,
                  std::vector<framework::Tensor>& outputs) {
    // assume the the max size of input is less than 8 and see the performance
    // save origin dim
    int num = outputs.size();
    std::vector<paddle::framework::DDim> origin_dim(num);
C
chengduoZH 已提交
77

C
chengduoZH 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    // get the matrix size
    int input_rows = 1;
    auto dim_0 = outputs[0].dims();
    for (int i = 0; i < axis; ++i) {
      input_rows *= dim_0[i];
    }
    int input_cols = 0;

    // get outputs' cols
    std::vector<int64_t> output_cols(outputs.size());
    for (int i = 0; i < num; ++i) {
      int t_cols = outputs[i].numel() / input_rows;
      input_cols += t_cols;
      output_cols[i] = t_cols;
    }
    auto& cpu_place = boost::get<platform::CPUPlace>(context.GetPlace());

    // computation
    for (int k = 0; k < input_rows; ++k) {
      const T* src_ptr = input.data<T>() + k * input_cols;
      int col_idx = 0;
      for (int j = 0; j < num; ++j) {
        int col_len = output_cols[j];
        T* dst_ptr = outputs[j].data<T>() + k * col_len;
        memory::Copy(cpu_place, dst_ptr, cpu_place, src_ptr + col_idx,
                     sizeof(T) * col_len);
        col_idx += col_len;
      }
    }
C
chengduoZH 已提交
107 108 109 110 111 112 113 114
  }
};

template class ConcatFunctor<platform::CPUDeviceContext, int>;
template class ConcatFunctor<platform::CPUDeviceContext, int64_t>;
template class ConcatFunctor<platform::CPUDeviceContext, float>;
template class ConcatFunctor<platform::CPUDeviceContext, double>;

C
chengduoZH 已提交
115 116 117 118 119
template class ConcatGradFunctor<platform::CPUDeviceContext, int>;
template class ConcatGradFunctor<platform::CPUDeviceContext, int64_t>;
template class ConcatGradFunctor<platform::CPUDeviceContext, float>;
template class ConcatGradFunctor<platform::CPUDeviceContext, double>;

C
chengduoZH 已提交
120 121 122
}  // namespace math
}  // namespace operators
}  // namespace paddle