/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/math/concat.h" namespace paddle { namespace operators { namespace math { /* * All tensors' dimension should be the same. */ template class ConcatFunctor { public: void operator()(const platform::CPUDeviceContext& context, const std::vector& input, const int axis, framework::Tensor* output) { // assume the the max size of input is less than 8 and see the performance // save origin dim int num = input.size(); std::vector origin_dim(num); // get the matrix size int rows = 1; auto dim_0 = input[0].dims(); for (int i = 0; i < axis; ++i) { rows *= dim_0[i]; } int out_rows = rows, out_cols = 0; // get input's cols std::vector input_cols(input.size()); for (int i = 0; i < num; ++i) { int t_cols = input[i].numel() / rows; out_cols += t_cols; input_cols[i] = t_cols; } auto& cpu_place = boost::get(context.GetPlace()); // computation for (int k = 0; k < out_rows; ++k) { T* dst_ptr = output->data() + k * out_cols; int col_idx = 0; for (int j = 0; j < num; ++j) { int col_len = input_cols[j]; const T* src_prt = input[j].data() + k * col_len; memory::Copy(cpu_place, dst_ptr + col_idx, cpu_place, src_prt, sizeof(T) * col_len); col_idx += col_len; } } } }; template class ConcatGradFunctor { public: void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const int axis, std::vector& outputs) { // assume the the max size of input is less than 8 and see the performance // save origin dim int num = outputs.size(); std::vector origin_dim(num); // get the matrix size int input_rows = 1; auto dim_0 = outputs[0].dims(); for (int i = 0; i < axis; ++i) { input_rows *= dim_0[i]; } int input_cols = 0; // get outputs' cols std::vector output_cols(outputs.size()); for (int i = 0; i < num; ++i) { int t_cols = outputs[i].numel() / input_rows; input_cols += t_cols; output_cols[i] = t_cols; } auto& cpu_place = boost::get(context.GetPlace()); // computation for (int k = 0; k < input_rows; ++k) { const T* src_ptr = input.data() + k * input_cols; int col_idx = 0; for (int j = 0; j < num; ++j) { int col_len = output_cols[j]; T* dst_ptr = outputs[j].data() + k * col_len; memory::Copy(cpu_place, dst_ptr, cpu_place, src_ptr + col_idx, sizeof(T) * col_len); col_idx += col_len; } } } }; template class ConcatFunctor; template class ConcatFunctor; template class ConcatFunctor; template class ConcatFunctor; template class ConcatGradFunctor; template class ConcatGradFunctor; template class ConcatGradFunctor; template class ConcatGradFunctor; } // namespace math } // namespace operators } // namespace paddle