gaussian_random_op.cu 3.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
Q
qijun 已提交
16 17
#include <thrust/random.h>
#include <thrust/transform.h>
Y
yaoxuefeng 已提交
18
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
21
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
22
#include "paddle/fluid/operators/distribution_helper.h"
23
#include "paddle/fluid/operators/fill_constant_op.h"
24
#include "paddle/fluid/operators/index_impl.cu.h"
Q
qijun 已提交
25

26 27
DECLARE_bool(use_curand);

Q
qijun 已提交
28 29 30 31 32 33 34
namespace paddle {
namespace operators {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
Y
yaoxuefeng 已提交
35
  unsigned int offset_ = 0;
Q
qijun 已提交
36 37 38 39

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

Y
yaoxuefeng 已提交
40 41 42
  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

Q
qijun 已提交
43 44 45
  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
46 47
    using MT = typename details::MPTypeTrait<T>::Type;
    thrust::normal_distribution<MT> dist(mean_, std_);
Y
yaoxuefeng 已提交
48 49
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
50 51
    MT out = dist(rng);
    return static_cast<T>(out);
Q
qijun 已提交
52 53 54
  }
};

55 56 57 58 59 60 61
template <typename T>
class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
62
    bool seed_flag = false;
63 64 65
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
66
      seed_flag = true;
67 68 69 70
    }
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
71

72
    int device_id = context.GetPlace().GetDeviceId();
Y
yaoxuefeng 已提交
73
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);
74 75
    auto& dev_cxt =
        context.template device_context<platform::CUDADeviceContext>();
Y
yaoxuefeng 已提交
76 77 78

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
Y
Yang 已提交
79
      int64_t gen_offset = size * seed_offset.second;
80 81 82
      auto func = GaussianGenerator<T>(mean, std, seed_offset.first,
                                       seed_offset.second);
      IndexKernel<T, GaussianGenerator<T>>(dev_cxt, tensor, func);
Y
yaoxuefeng 已提交
83
    } else {
84 85
      auto func = GaussianGenerator<T>(mean, std, seed);
      IndexKernel<T, GaussianGenerator<T>>(dev_cxt, tensor, func);
Y
yaoxuefeng 已提交
86
    }
87 88
  }
};
Q
qijun 已提交
89 90
}  // namespace operators
}  // namespace paddle
D
dongzhihong 已提交
91

92 93
REGISTER_OP_CUDA_KERNEL(
    gaussian_random_batch_size_like,
94 95
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<
        paddle::platform::float16>,
96 97
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<float>,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<double>);