gaussian_random_op.cu 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10 11 12 13

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
Q
qijun 已提交
16 17
#include <thrust/random.h>
#include <thrust/transform.h>
Y
yaoxuefeng 已提交
18
#include "paddle/fluid/framework/generator.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
21
#include "paddle/fluid/operators/amp/fp16_type_traits.h"
22
#include "paddle/fluid/operators/fill_constant_op.h"
Q
qijun 已提交
23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

template <typename T>
struct GaussianGenerator {
  T mean_, std_;
  unsigned int seed_;
Y
yaoxuefeng 已提交
31
  unsigned int offset_ = 0;
Q
qijun 已提交
32 33 34 35

  __host__ __device__ GaussianGenerator(T mean, T std, int seed)
      : mean_(mean), std_(std), seed_(seed) {}

Y
yaoxuefeng 已提交
36 37 38
  __host__ __device__ GaussianGenerator(T mean, T std, int seed, int offset)
      : mean_(mean), std_(std), seed_(seed), offset_(offset) {}

Q
qijun 已提交
39 40 41
  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
42 43
    using MT = typename details::MPTypeTrait<T>::Type;
    thrust::normal_distribution<MT> dist(mean_, std_);
Y
yaoxuefeng 已提交
44 45
    unsigned int new_n = n + offset_;
    rng.discard(new_n);
46 47
    MT out = dist(rng);
    return static_cast<T>(out);
Q
qijun 已提交
48 49 50 51
  }
};

template <typename T>
Y
Yu Yang 已提交
52
class GPUGaussianRandomKernel : public framework::OpKernel<T> {
Q
qijun 已提交
53 54 55
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
Y
Pass CI  
Yu Yang 已提交
56
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
57
    bool seed_flag = false;
Q
qijun 已提交
58 59 60
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
61
      seed_flag = true;
Q
qijun 已提交
62
    }
Y
Yu Yang 已提交
63 64
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
Y
Yang 已提交
65
    thrust::counting_iterator<int64_t> index_sequence_begin(0);
66
    auto shape = GetShape(context);
67 68 69
    tensor->Resize(shape);
    T* data = tensor->mutable_data<T>(context.GetPlace());

70
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
71

72
    int device_id = context.GetPlace().GetDeviceId();
Y
yaoxuefeng 已提交
73 74 75 76
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
Y
Yang 已提交
77
      int64_t gen_offset = size * seed_offset.second;
Y
yaoxuefeng 已提交
78 79 80 81 82 83 84 85 86
      thrust::transform(
          index_sequence_begin, index_sequence_begin + size,
          thrust::device_ptr<T>(data),
          GaussianGenerator<T>(mean, std, seed_offset.first, gen_offset));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
Q
qijun 已提交
87 88 89
  }
};

90 91 92 93 94 95 96
template <typename T>
class GPUGaussianRandomBatchSizeLikeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* tensor = context.Output<framework::Tensor>("Out");
    T* data = tensor->mutable_data<T>(context.GetPlace());
    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
Y
yaoxuefeng 已提交
97
    bool seed_flag = false;
98 99 100
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
Y
yaoxuefeng 已提交
101
      seed_flag = true;
102 103 104
    }
    T mean = static_cast<T>(context.Attr<float>("mean"));
    T std = static_cast<T>(context.Attr<float>("std"));
Y
Yang 已提交
105
    thrust::counting_iterator<int64_t> index_sequence_begin(0);
106
    int64_t size = tensor->numel();
Y
yaoxuefeng 已提交
107

108
    int device_id = context.GetPlace().GetDeviceId();
Y
yaoxuefeng 已提交
109 110 111 112
    auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);

    if (gen_cuda->GetIsInitPy() && seed_flag) {
      auto seed_offset = gen_cuda->IncrementOffset(1);
Y
Yang 已提交
113
      int64_t gen_offset = size * seed_offset.second;
Y
yaoxuefeng 已提交
114 115 116 117 118 119 120 121 122
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed_offset.first,
                                             seed_offset.second));
    } else {
      thrust::transform(index_sequence_begin, index_sequence_begin + size,
                        thrust::device_ptr<T>(data),
                        GaussianGenerator<T>(mean, std, seed));
    }
123 124
  }
};
Q
qijun 已提交
125 126
}  // namespace operators
}  // namespace paddle
D
dongzhihong 已提交
127

128 129 130 131 132
REGISTER_OP_CUDA_KERNEL(
    gaussian_random,
    paddle::operators::GPUGaussianRandomKernel<paddle::platform::float16>,
    paddle::operators::GPUGaussianRandomKernel<float>,
    paddle::operators::GPUGaussianRandomKernel<double>);
133 134
REGISTER_OP_CUDA_KERNEL(
    gaussian_random_batch_size_like,
135 136
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<
        paddle::platform::float16>,
137 138
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<float>,
    paddle::operators::GPUGaussianRandomBatchSizeLikeKernel<double>);