predictor.py 11.7 KB
Newer Older
F
Francisco Massa 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import cv2
import torch
from torchvision import transforms as T

from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker


class COCODemo(object):
    # COCO categories for pretty print
    CATEGORIES = [
        "__background",
        "person",
        "bicycle",
        "car",
        "motorcycle",
        "airplane",
        "bus",
        "train",
        "truck",
        "boat",
        "traffic light",
        "fire hydrant",
        "stop sign",
        "parking meter",
        "bench",
        "bird",
        "cat",
        "dog",
        "horse",
        "sheep",
        "cow",
        "elephant",
        "bear",
        "zebra",
        "giraffe",
        "backpack",
        "umbrella",
        "handbag",
        "tie",
        "suitcase",
        "frisbee",
        "skis",
        "snowboard",
        "sports ball",
        "kite",
        "baseball bat",
        "baseball glove",
        "skateboard",
        "surfboard",
        "tennis racket",
        "bottle",
        "wine glass",
        "cup",
        "fork",
        "knife",
        "spoon",
        "bowl",
        "banana",
        "apple",
        "sandwich",
        "orange",
        "broccoli",
        "carrot",
        "hot dog",
        "pizza",
        "donut",
        "cake",
        "chair",
        "couch",
        "potted plant",
        "bed",
        "dining table",
        "toilet",
        "tv",
        "laptop",
        "mouse",
        "remote",
        "keyboard",
        "cell phone",
        "microwave",
        "oven",
        "toaster",
        "sink",
        "refrigerator",
        "book",
        "clock",
        "vase",
        "scissors",
        "teddy bear",
        "hair drier",
        "toothbrush",
    ]

    def __init__(
        self,
        cfg,
        confidence_threshold=0.7,
        show_mask_heatmaps=False,
        masks_per_dim=2,
        min_image_size=224,
    ):
        self.cfg = cfg.clone()
        self.model = build_detection_model(cfg)
        self.model.eval()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.model.to(self.device)
        self.min_image_size = min_image_size

C
CoinCheung 已提交
113 114
        save_dir = cfg.OUTPUT_DIR
        checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
F
Francisco Massa 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        _ = checkpointer.load(cfg.MODEL.WEIGHT)

        self.transforms = self.build_transform()

        mask_threshold = -1 if show_mask_heatmaps else 0.5
        self.masker = Masker(threshold=mask_threshold, padding=1)

        # used to make colors for each class
        self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])

        self.cpu_device = torch.device("cpu")
        self.confidence_threshold = confidence_threshold
        self.show_mask_heatmaps = show_mask_heatmaps
        self.masks_per_dim = masks_per_dim

    def build_transform(self):
        """
        Creates a basic transformation that was used to train the models
        """
        cfg = self.cfg

        # we are loading images with OpenCV, so we don't need to convert them
        # to BGR, they are already! So all we need to do is to normalize
        # by 255 if we want to convert to BGR255 format, or flip the channels
        # if we want it to be in RGB in [0-1] range.
        if cfg.INPUT.TO_BGR255:
            to_bgr_transform = T.Lambda(lambda x: x * 255)
        else:
            to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])

        normalize_transform = T.Normalize(
            mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
        )

        transform = T.Compose(
            [
                T.ToPILImage(),
                T.Resize(self.min_image_size),
                T.ToTensor(),
                to_bgr_transform,
                normalize_transform,
            ]
        )
        return transform

    def run_on_opencv_image(self, image):
        """
        Arguments:
            image (np.ndarray): an image as returned by OpenCV

        Returns:
            prediction (BoxList): the detected objects. Additional information
                of the detection properties can be found in the fields of
                the BoxList via `prediction.fields()`
        """
        predictions = self.compute_prediction(image)
        top_predictions = self.select_top_predictions(predictions)

        result = image.copy()
        if self.show_mask_heatmaps:
            return self.create_mask_montage(result, top_predictions)
        result = self.overlay_boxes(result, top_predictions)
        if self.cfg.MODEL.MASK_ON:
            result = self.overlay_mask(result, top_predictions)
        result = self.overlay_class_names(result, top_predictions)

        return result

    def compute_prediction(self, original_image):
        """
        Arguments:
            original_image (np.ndarray): an image as returned by OpenCV

        Returns:
            prediction (BoxList): the detected objects. Additional information
                of the detection properties can be found in the fields of
                the BoxList via `prediction.fields()`
        """
        # apply pre-processing to image
        image = self.transforms(original_image)
        # convert to an ImageList, padded so that it is divisible by
        # cfg.DATALOADER.SIZE_DIVISIBILITY
        image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY)
        image_list = image_list.to(self.device)
        # compute predictions
        with torch.no_grad():
            predictions = self.model(image_list)
        predictions = [o.to(self.cpu_device) for o in predictions]

        # always single image is passed at a time
        prediction = predictions[0]

        # reshape prediction (a BoxList) into the original image size
        height, width = original_image.shape[:-1]
        prediction = prediction.resize((width, height))

        if prediction.has_field("mask"):
            # if we have masks, paste the masks in the right position
            # in the image, as defined by the bounding boxes
            masks = prediction.get_field("mask")
215 216
            # always single image is passed at a time
            masks = self.masker([masks], [prediction])[0]
F
Francisco Massa 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
            prediction.add_field("mask", masks)
        return prediction

    def select_top_predictions(self, predictions):
        """
        Select only predictions which have a `score` > self.confidence_threshold,
        and returns the predictions in descending order of score

        Arguments:
            predictions (BoxList): the result of the computation by the model.
                It should contain the field `scores`.

        Returns:
            prediction (BoxList): the detected objects. Additional information
                of the detection properties can be found in the fields of
                the BoxList via `prediction.fields()`
        """
        scores = predictions.get_field("scores")
        keep = torch.nonzero(scores > self.confidence_threshold).squeeze(1)
        predictions = predictions[keep]
        scores = predictions.get_field("scores")
        _, idx = scores.sort(0, descending=True)
        return predictions[idx]

    def compute_colors_for_labels(self, labels):
        """
        Simple function that adds fixed colors depending on the class
        """
        colors = labels[:, None] * self.palette
        colors = (colors % 255).numpy().astype("uint8")
        return colors

    def overlay_boxes(self, image, predictions):
        """
        Adds the predicted boxes on top of the image

        Arguments:
            image (np.ndarray): an image as returned by OpenCV
            predictions (BoxList): the result of the computation by the model.
                It should contain the field `labels`.
        """
        labels = predictions.get_field("labels")
        boxes = predictions.bbox

        colors = self.compute_colors_for_labels(labels).tolist()

        for box, color in zip(boxes, colors):
            box = box.to(torch.int64)
            top_left, bottom_right = box[:2].tolist(), box[2:].tolist()
            image = cv2.rectangle(
                image, tuple(top_left), tuple(bottom_right), tuple(color), 1
            )

        return image

    def overlay_mask(self, image, predictions):
        """
        Adds the instances contours for each predicted object.
        Each label has a different color.

        Arguments:
            image (np.ndarray): an image as returned by OpenCV
            predictions (BoxList): the result of the computation by the model.
                It should contain the field `mask` and `labels`.
        """
        masks = predictions.get_field("mask").numpy()
        labels = predictions.get_field("labels")

        colors = self.compute_colors_for_labels(labels).tolist()

        for mask, color in zip(masks, colors):
            thresh = mask[0, :, :, None]
            _, contours, hierarchy = cv2.findContours(
                thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
            )
            image = cv2.drawContours(image, contours, -1, color, 3)

        composite = image

        return composite

    def create_mask_montage(self, image, predictions):
        """
        Create a montage showing the probability heatmaps for each one one of the
        detected objects

        Arguments:
            image (np.ndarray): an image as returned by OpenCV
            predictions (BoxList): the result of the computation by the model.
                It should contain the field `mask`.
        """
        masks = predictions.get_field("mask")
        masks_per_dim = self.masks_per_dim
        masks = torch.nn.functional.interpolate(
            masks.float(), scale_factor=1 / masks_per_dim
        ).byte()
        height, width = masks.shape[-2:]
        max_masks = masks_per_dim ** 2
        masks = masks[:max_masks]
        # handle case where we have less detections than max_masks
        if len(masks) < max_masks:
            masks_padded = torch.zeros(max_masks, 1, height, width, dtype=torch.uint8)
            masks_padded[: len(masks)] = masks
            masks = masks_padded
        masks = masks.reshape(masks_per_dim, masks_per_dim, height, width)
        result = torch.zeros(
            (masks_per_dim * height, masks_per_dim * width), dtype=torch.uint8
        )
        for y in range(masks_per_dim):
            start_y = y * height
            end_y = (y + 1) * height
            for x in range(masks_per_dim):
                start_x = x * width
                end_x = (x + 1) * width
                result[start_y:end_y, start_x:end_x] = masks[y, x]
        return cv2.applyColorMap(result.numpy(), cv2.COLORMAP_JET)

    def overlay_class_names(self, image, predictions):
        """
        Adds detected class names and scores in the positions defined by the
        top-left corner of the predicted bounding box

        Arguments:
            image (np.ndarray): an image as returned by OpenCV
            predictions (BoxList): the result of the computation by the model.
                It should contain the field `scores` and `labels`.
        """
        scores = predictions.get_field("scores").tolist()
        labels = predictions.get_field("labels").tolist()
        labels = [self.CATEGORIES[i] for i in labels]
        boxes = predictions.bbox

        template = "{}: {:.2f}"
        for box, score, label in zip(boxes, scores, labels):
            x, y = box[:2]
            s = template.format(label, score)
            cv2.putText(
                image, s, (x, y), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 255, 255), 1
            )

        return image