# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. import cv2 import torch from torchvision import transforms as T from maskrcnn_benchmark.modeling.detector import build_detection_model from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer from maskrcnn_benchmark.structures.image_list import to_image_list from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker class COCODemo(object): # COCO categories for pretty print CATEGORIES = [ "__background", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", ] def __init__( self, cfg, confidence_threshold=0.7, show_mask_heatmaps=False, masks_per_dim=2, min_image_size=224, ): self.cfg = cfg.clone() self.model = build_detection_model(cfg) self.model.eval() self.device = torch.device(cfg.MODEL.DEVICE) self.model.to(self.device) self.min_image_size = min_image_size save_dir = cfg.OUTPUT_DIR checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir) _ = checkpointer.load(cfg.MODEL.WEIGHT) self.transforms = self.build_transform() mask_threshold = -1 if show_mask_heatmaps else 0.5 self.masker = Masker(threshold=mask_threshold, padding=1) # used to make colors for each class self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1]) self.cpu_device = torch.device("cpu") self.confidence_threshold = confidence_threshold self.show_mask_heatmaps = show_mask_heatmaps self.masks_per_dim = masks_per_dim def build_transform(self): """ Creates a basic transformation that was used to train the models """ cfg = self.cfg # we are loading images with OpenCV, so we don't need to convert them # to BGR, they are already! So all we need to do is to normalize # by 255 if we want to convert to BGR255 format, or flip the channels # if we want it to be in RGB in [0-1] range. if cfg.INPUT.TO_BGR255: to_bgr_transform = T.Lambda(lambda x: x * 255) else: to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]]) normalize_transform = T.Normalize( mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD ) transform = T.Compose( [ T.ToPILImage(), T.Resize(self.min_image_size), T.ToTensor(), to_bgr_transform, normalize_transform, ] ) return transform def run_on_opencv_image(self, image): """ Arguments: image (np.ndarray): an image as returned by OpenCV Returns: prediction (BoxList): the detected objects. Additional information of the detection properties can be found in the fields of the BoxList via `prediction.fields()` """ predictions = self.compute_prediction(image) top_predictions = self.select_top_predictions(predictions) result = image.copy() if self.show_mask_heatmaps: return self.create_mask_montage(result, top_predictions) result = self.overlay_boxes(result, top_predictions) if self.cfg.MODEL.MASK_ON: result = self.overlay_mask(result, top_predictions) result = self.overlay_class_names(result, top_predictions) return result def compute_prediction(self, original_image): """ Arguments: original_image (np.ndarray): an image as returned by OpenCV Returns: prediction (BoxList): the detected objects. Additional information of the detection properties can be found in the fields of the BoxList via `prediction.fields()` """ # apply pre-processing to image image = self.transforms(original_image) # convert to an ImageList, padded so that it is divisible by # cfg.DATALOADER.SIZE_DIVISIBILITY image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY) image_list = image_list.to(self.device) # compute predictions with torch.no_grad(): predictions = self.model(image_list) predictions = [o.to(self.cpu_device) for o in predictions] # always single image is passed at a time prediction = predictions[0] # reshape prediction (a BoxList) into the original image size height, width = original_image.shape[:-1] prediction = prediction.resize((width, height)) if prediction.has_field("mask"): # if we have masks, paste the masks in the right position # in the image, as defined by the bounding boxes masks = prediction.get_field("mask") # always single image is passed at a time masks = self.masker([masks], [prediction])[0] prediction.add_field("mask", masks) return prediction def select_top_predictions(self, predictions): """ Select only predictions which have a `score` > self.confidence_threshold, and returns the predictions in descending order of score Arguments: predictions (BoxList): the result of the computation by the model. It should contain the field `scores`. Returns: prediction (BoxList): the detected objects. Additional information of the detection properties can be found in the fields of the BoxList via `prediction.fields()` """ scores = predictions.get_field("scores") keep = torch.nonzero(scores > self.confidence_threshold).squeeze(1) predictions = predictions[keep] scores = predictions.get_field("scores") _, idx = scores.sort(0, descending=True) return predictions[idx] def compute_colors_for_labels(self, labels): """ Simple function that adds fixed colors depending on the class """ colors = labels[:, None] * self.palette colors = (colors % 255).numpy().astype("uint8") return colors def overlay_boxes(self, image, predictions): """ Adds the predicted boxes on top of the image Arguments: image (np.ndarray): an image as returned by OpenCV predictions (BoxList): the result of the computation by the model. It should contain the field `labels`. """ labels = predictions.get_field("labels") boxes = predictions.bbox colors = self.compute_colors_for_labels(labels).tolist() for box, color in zip(boxes, colors): box = box.to(torch.int64) top_left, bottom_right = box[:2].tolist(), box[2:].tolist() image = cv2.rectangle( image, tuple(top_left), tuple(bottom_right), tuple(color), 1 ) return image def overlay_mask(self, image, predictions): """ Adds the instances contours for each predicted object. Each label has a different color. Arguments: image (np.ndarray): an image as returned by OpenCV predictions (BoxList): the result of the computation by the model. It should contain the field `mask` and `labels`. """ masks = predictions.get_field("mask").numpy() labels = predictions.get_field("labels") colors = self.compute_colors_for_labels(labels).tolist() for mask, color in zip(masks, colors): thresh = mask[0, :, :, None] _, contours, hierarchy = cv2.findContours( thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE ) image = cv2.drawContours(image, contours, -1, color, 3) composite = image return composite def create_mask_montage(self, image, predictions): """ Create a montage showing the probability heatmaps for each one one of the detected objects Arguments: image (np.ndarray): an image as returned by OpenCV predictions (BoxList): the result of the computation by the model. It should contain the field `mask`. """ masks = predictions.get_field("mask") masks_per_dim = self.masks_per_dim masks = torch.nn.functional.interpolate( masks.float(), scale_factor=1 / masks_per_dim ).byte() height, width = masks.shape[-2:] max_masks = masks_per_dim ** 2 masks = masks[:max_masks] # handle case where we have less detections than max_masks if len(masks) < max_masks: masks_padded = torch.zeros(max_masks, 1, height, width, dtype=torch.uint8) masks_padded[: len(masks)] = masks masks = masks_padded masks = masks.reshape(masks_per_dim, masks_per_dim, height, width) result = torch.zeros( (masks_per_dim * height, masks_per_dim * width), dtype=torch.uint8 ) for y in range(masks_per_dim): start_y = y * height end_y = (y + 1) * height for x in range(masks_per_dim): start_x = x * width end_x = (x + 1) * width result[start_y:end_y, start_x:end_x] = masks[y, x] return cv2.applyColorMap(result.numpy(), cv2.COLORMAP_JET) def overlay_class_names(self, image, predictions): """ Adds detected class names and scores in the positions defined by the top-left corner of the predicted bounding box Arguments: image (np.ndarray): an image as returned by OpenCV predictions (BoxList): the result of the computation by the model. It should contain the field `scores` and `labels`. """ scores = predictions.get_field("scores").tolist() labels = predictions.get_field("labels").tolist() labels = [self.CATEGORIES[i] for i in labels] boxes = predictions.bbox template = "{}: {:.2f}" for box, score, label in zip(boxes, scores, labels): x, y = box[:2] s = template.format(label, score) cv2.putText( image, s, (x, y), cv2.FONT_HERSHEY_SIMPLEX, .5, (255, 255, 255), 1 ) return image