提交 6bb83ad3 编写于 作者: Z ZPaC

Add ps optimizer kernels.

上级 da9452ee
...@@ -29,7 +29,10 @@ if (ENABLE_CPU) ...@@ -29,7 +29,10 @@ if (ENABLE_CPU)
list(REMOVE_ITEM CPU_SRC_LIST "cpu/ps/push_kernel.cc" list(REMOVE_ITEM CPU_SRC_LIST "cpu/ps/push_kernel.cc"
"cpu/ps/pull_kernel.cc" "cpu/ps/pull_kernel.cc"
"cpu/ps/embedding_look_up_ps_kernel.cc" "cpu/ps/embedding_look_up_ps_kernel.cc"
"cpu/ps/embedding_look_up_proxy_kernel.cc") "cpu/ps/embedding_look_up_proxy_kernel.cc"
"cpu/ps/apply_momentum_ps_kernel.cc"
"cpu/ps/sparse_apply_adam_ps_kernel.cc"
"cpu/ps/sparse_apply_ftrl_ps_kernel.cc")
if (NOT ENABLE_MPI) if (NOT ENABLE_MPI)
list(REMOVE_ITEM CPU_SRC_LIST "cpu/allgather_cpu_kernel.cc") list(REMOVE_ITEM CPU_SRC_LIST "cpu/allgather_cpu_kernel.cc")
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/ps/apply_momentum_ps_kernel.h"
namespace mindspore {
namespace kernel {
namespace ps {
bool ApplyMomentumPSKernel::Execute(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) {
return Launch(inputs, workspace, outputs);
}
const std::vector<size_t> &ApplyMomentumPSKernel::input_sizes() const { return GetInputSizeList(); }
const std::vector<size_t> &ApplyMomentumPSKernel::output_sizes() const { return GetOutputSizeList(); }
const std::vector<size_t> &ApplyMomentumPSKernel::workspace_sizes() const { return GetWorkspaceSizeList(); }
} // namespace ps
} // namespace kernel
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_APPLY_MOMENTUM_PS_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_APPLY_MOMENTUM_PS_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/ps/pserver_kernel.h"
#include "kernel/cpu/apply_momentum_cpu_kernel.h"
namespace mindspore {
namespace kernel {
namespace ps {
class ApplyMomentumPSKernel : public ApplyMomentumCPUKernel, public PServerKernel {
public:
ApplyMomentumPSKernel(size_t rank_id, size_t pserver_num) : PServerKernel(rank_id, pserver_num) {}
~ApplyMomentumPSKernel() override = default;
bool Execute(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
const std::vector<size_t> &input_sizes() const override;
const std::vector<size_t> &output_sizes() const override;
const std::vector<size_t> &workspace_sizes() const override;
};
} // namespace ps
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_APPLY_MOMENTUM_PS_KERNEL_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/ps/pserver_kernel.h"
#include "parallel/ps/util.h"
namespace mindspore {
namespace kernel {
namespace ps {} // namespace ps
} // namespace kernel
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_PS_PSERVER_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_PS_PSERVER_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/kernel.h"
#include "parallel/ps/util.h"
namespace mindspore {
namespace kernel {
namespace ps {
using mindspore::parallel::ps::Util;
class PServerKernel {
public:
PServerKernel(size_t rank_id, size_t pserver_num) : rank_id_(rank_id), pserver_num_(pserver_num) {}
~PServerKernel() = default;
PServerKernel(const PServerKernel &) = delete;
PServerKernel &operator=(const PServerKernel &) = delete;
virtual void InitKernel(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &) {}
virtual void ReInit(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &) {}
virtual bool Execute(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) = 0;
virtual const std::vector<size_t> &input_sizes() const = 0;
virtual const std::vector<size_t> &output_sizes() const = 0;
virtual const std::vector<size_t> &workspace_sizes() const = 0;
protected:
virtual void ReInit(const std::vector<AddressPtr> &) {}
void Shard(std::vector<size_t> *shape, int axis) {
(*shape)[axis] = Util::LocalShard((*shape)[axis], rank_id_, pserver_num_);
}
size_t rank_id_;
size_t pserver_num_;
};
} // namespace ps
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_PS_PSERVER_KERNEL_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/ps/sparse_apply_adam_ps_kernel.h"
#include <memory>
#include "kernel/common_utils.h"
#include "device/cpu/cpu_device_address.h"
#include "parallel/ps/util.h"
namespace mindspore {
namespace kernel {
namespace ps {
void SparseApplyAdamPSKernel::InitKernel(
const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &shapes) {
const std::vector<std::shared_ptr<std::vector<size_t>>> &shape_vec = *shapes;
std::vector<size_t> &var_shape = *(shape_vec[0]);
std::vector<size_t> &m_shape = *(shape_vec[1]);
std::vector<size_t> &v_shape = *(shape_vec[2]);
const std::vector<size_t> &grad_shape = *(shape_vec[9]);
const std::vector<size_t> &indices_shape = *(shape_vec[10]);
Shard(&var_shape, 0);
Shard(&m_shape, 0);
Shard(&v_shape, 0);
if (!IsSameShape(var_shape, m_shape)) {
MS_LOG(EXCEPTION) << "var and m should have the same shape";
}
if (!IsSameShape(var_shape, v_shape)) {
MS_LOG(EXCEPTION) << "var and v should have the same shape";
}
var_first_dim_size_ = var_shape[0];
for (size_t i = 1; i < var_shape.size(); ++i) {
if (var_shape[i] != grad_shape[i]) {
MS_LOG(EXCEPTION) << "The shape of var and grad must equal in dimension " << i;
}
var_outer_dim_size_ *= var_shape[i];
}
if (indices_shape.size() != 1) {
MS_LOG(EXCEPTION) << "indices must be 1D";
}
indices_size_ = indices_shape[0];
if (grad_shape[0] != indices_size_) {
MS_LOG(ERROR) << "The first dimension of grad shape must be equal to indices";
}
/*
if (AnfAlgo::HasNodeAttr(USE_NESTEROV, kernel_node)) {
use_nesterov_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "use_nesterov");
}
*/
workspace_size_list_.emplace_back(indices_size_ * var_outer_dim_size_ * sizeof(float));
workspace_size_list_.emplace_back(indices_size_ * sizeof(int));
workspace_size_list_.emplace_back(var_first_dim_size_ * var_outer_dim_size_ * sizeof(float));
}
void SparseApplyAdamPSKernel::ReInit(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &shapes) {
const std::vector<std::shared_ptr<std::vector<size_t>>> &shape_vec = *shapes;
const std::vector<size_t> &indices_shape = *(shape_vec[0]);
indices_size_ = indices_shape[0];
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float);
workspace_size_list_[1] = indices_size_ * sizeof(int);
}
void SparseApplyAdamPSKernel::ReInit(const std::vector<AddressPtr> &inputs) {
const auto &indices_addr = inputs[10];
indices_size_ = indices_addr->size;
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float);
workspace_size_list_[1] = indices_size_ * sizeof(int);
}
bool SparseApplyAdamPSKernel::Execute(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) {
ReInit(inputs);
int *indices = reinterpret_cast<int *>(inputs[10]->addr);
for (size_t i = 0; i < inputs[10]->size / sizeof(int); i++) {
indices[i] -= rank_id_ * var_first_dim_size_;
}
return Launch(inputs, workspace, outputs);
}
const std::vector<size_t> &SparseApplyAdamPSKernel::input_sizes() const { return GetInputSizeList(); }
const std::vector<size_t> &SparseApplyAdamPSKernel::output_sizes() const { return GetOutputSizeList(); }
const std::vector<size_t> &SparseApplyAdamPSKernel::workspace_sizes() const { return GetWorkspaceSizeList(); }
} // namespace ps
} // namespace kernel
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_ADAM_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_ADAM_PS_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/ps/pserver_kernel.h"
#include "kernel/cpu/sparse_apply_adam_cpu_kernel.h"
namespace mindspore {
namespace kernel {
namespace ps {
using mindspore::kernel::SparseApplyAdamCPUKernel;
class SparseApplyAdamPSKernel : public SparseApplyAdamCPUKernel, public PServerKernel {
public:
SparseApplyAdamPSKernel(size_t rank_id, size_t pserver_num) : PServerKernel(rank_id, pserver_num) {}
~SparseApplyAdamPSKernel() override = default;
void InitKernel(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &) override;
void ReInit(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &) override;
bool Execute(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
const std::vector<size_t> &input_sizes() const override;
const std::vector<size_t> &output_sizes() const override;
const std::vector<size_t> &workspace_sizes() const override;
protected:
void ReInit(const std::vector<AddressPtr> &) override;
};
} // namespace ps
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_ADAM_PS_KERNEL_H_
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel/cpu/ps/sparse_apply_ftrl_ps_kernel.h"
#include "device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
namespace ps {
void SparseApplyFtrlPSKernel::InitKernel(
const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &shapes) {
const std::vector<std::shared_ptr<std::vector<size_t>>> &shape_vec = *shapes;
std::vector<size_t> var_shape = *(shape_vec[0]);
std::vector<size_t> accum_shape = *(shape_vec[1]);
std::vector<size_t> linear_shape = *(shape_vec[2]);
std::vector<size_t> grad_shape = *(shape_vec[3]);
std::vector<size_t> indices_shape = *(shape_vec[4]);
Shard(&var_shape, 0);
Shard(&accum_shape, 0);
Shard(&linear_shape, 0);
var_first_dim_size_ = var_shape[0];
for (size_t i = 1; i < var_shape.size(); ++i) {
if (var_shape[i] != grad_shape[i]) {
MS_LOG(EXCEPTION) << "The shape of var and grad must equal in dimension " << i;
}
var_outer_dim_size_ *= var_shape[i];
}
if (indices_shape.size() != 1) {
MS_LOG(EXCEPTION) << "indices must be a 1D vector";
}
indices_size_ = indices_shape[0];
if (grad_shape[0] != indices_size_) {
MS_LOG(EXCEPTION) << "The first dimension of grad shape must be equal to indices";
}
/*
lr_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "lr");
if (lr_ <= 0) {
MS_LOG(EXCEPTION) << "lr should be a positive scalar";
}
l1_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "l1");
if (l1_ < 0) {
MS_LOG(EXCEPTION) << "l1 should be a non-negative scalar";
}
l2_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "l2");
if (l2_ < 0) {
MS_LOG(EXCEPTION) << "l2 should be a non-negative scalar";
}
lr_power_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "lr_power");
if (lr_power_ > 0) {
MS_LOG(EXCEPTION) << "lr_power should be a non-positive scalar";
}
*/
workspace_size_list_.emplace_back(indices_size_ * var_outer_dim_size_ * sizeof(float));
workspace_size_list_.emplace_back(indices_size_ * sizeof(int));
}
void SparseApplyFtrlPSKernel::ReInit(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &shapes) {
const std::vector<std::shared_ptr<std::vector<size_t>>> &shape_vec = *shapes;
std::vector<size_t> indices_shape = *(shape_vec[0]);
indices_size_ = indices_shape[0];
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float);
workspace_size_list_[1] = indices_size_ * sizeof(int);
}
void SparseApplyFtrlPSKernel::ReInit(const std::vector<AddressPtr> &inputs) {
const auto &indices_addr = inputs[4];
indices_size_ = indices_addr->size;
workspace_size_list_[0] = indices_size_ * var_outer_dim_size_ * sizeof(float);
workspace_size_list_[1] = indices_size_ * sizeof(int);
}
bool SparseApplyFtrlPSKernel::Execute(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) {
ReInit(inputs);
int *indices = reinterpret_cast<int *>(inputs[4]->addr);
for (size_t i = 0; i < inputs[4]->size / sizeof(int); i++) {
indices[i] -= rank_id_ * var_first_dim_size_;
}
return Launch(inputs, workspace, outputs);
}
const std::vector<size_t> &SparseApplyFtrlPSKernel::input_sizes() const { return GetInputSizeList(); }
const std::vector<size_t> &SparseApplyFtrlPSKernel::output_sizes() const { return GetOutputSizeList(); }
const std::vector<size_t> &SparseApplyFtrlPSKernel::workspace_sizes() const { return GetWorkspaceSizeList(); }
} // namespace ps
} // namespace kernel
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_FTRL_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_FTRL_PS_KERNEL_H_
#include <vector>
#include <memory>
#include "kernel/cpu/ps/pserver_kernel.h"
#include "kernel/cpu/sparse_apply_ftrl_cpu_kernel.h"
namespace mindspore {
namespace kernel {
namespace ps {
using mindspore::kernel::SparseApplyFtrlCPUKernel;
class SparseApplyFtrlPSKernel : public SparseApplyFtrlCPUKernel, public PServerKernel {
public:
SparseApplyFtrlPSKernel(size_t rank_id, size_t pserver_num) : PServerKernel(rank_id, pserver_num) {}
~SparseApplyFtrlPSKernel() override = default;
void InitKernel(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &) override;
void ReInit(const std::shared_ptr<std::vector<std::shared_ptr<std::vector<size_t>>>> &) override;
bool Execute(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
const std::vector<size_t> &input_sizes() const override;
const std::vector<size_t> &output_sizes() const override;
const std::vector<size_t> &workspace_sizes() const override;
protected:
void ReInit(const std::vector<AddressPtr> &) override;
};
} // namespace ps
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_FTRL_PS_KERNEL_H_
...@@ -33,7 +33,7 @@ class SparseApplyAdamCPUKernel : public CPUKernel { ...@@ -33,7 +33,7 @@ class SparseApplyAdamCPUKernel : public CPUKernel {
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override; const std::vector<AddressPtr> &outputs) override;
private: protected:
size_t indices_size_{0}; size_t indices_size_{0};
size_t var_first_dim_size_{0}; size_t var_first_dim_size_{0};
size_t var_outer_dim_size_{1}; size_t var_outer_dim_size_{1};
......
...@@ -32,7 +32,7 @@ class SparseApplyFtrlCPUKernel : public CPUKernel { ...@@ -32,7 +32,7 @@ class SparseApplyFtrlCPUKernel : public CPUKernel {
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override; const std::vector<AddressPtr> &outputs) override;
private: protected:
size_t indices_size_{0}; size_t indices_size_{0};
size_t var_first_dim_size_{0}; size_t var_first_dim_size_{0};
size_t var_outer_dim_size_{1}; size_t var_outer_dim_size_{1};
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册